Thorarinn Gudjonsson , Jon Petur Joelsson , Ari Jon Arason , Arni Asbjarnarson , Fridrik Runar Gardarsson , Fredrik Lehmann , Peter Teodorovic , Saevar Ingthorsson , Snaevar Sigurdsson , Bryndis Valdimarsdottir , Michael John Parnham , Clive Page , Jennifer Ann Kricker
{"title":"一种新型大环内酯EP395,具有降低抗菌活性和增强呼吸道上皮屏障的作用","authors":"Thorarinn Gudjonsson , Jon Petur Joelsson , Ari Jon Arason , Arni Asbjarnarson , Fridrik Runar Gardarsson , Fredrik Lehmann , Peter Teodorovic , Saevar Ingthorsson , Snaevar Sigurdsson , Bryndis Valdimarsdottir , Michael John Parnham , Clive Page , Jennifer Ann Kricker","doi":"10.1016/j.pupt.2025.102363","DOIUrl":null,"url":null,"abstract":"<div><div>Epithelial barrier failure, a feature of several inflammatory lung diseases, contributes to exacerbations and disease progression. Acute exacerbations are often treated with macrolides, including azithromycin (AZM). In part, this is due to both primary antimicrobial and additional immunomodulatory actions, complemented by recently reported enhanced integrity of respiratory epithelial barriers. However, long-term “off label” use of macrolides is associated with increased bacterial resistance. We now introduce a new class of compounds, “Barriolides” that are analogues of AZM promoting airway epithelial barrier integrity <em>in vitro</em>, with negligible antibacterial activity. The lead compound is EP395 which does not affect cell viability up to 100 μM in VA10 bronchial epithelial cells. Treatment with EP395 for three weeks enhanced epithelial barrier integrity, measured by increased transepithelial electrical resistance, reduced paracellular flux in air-liquid interface culture and increased expression of tight junction proteins. EP395 also induced epidermal differentiation and formation of lamellar bodies, complemented by a relevant genetic footprint. In mice exposed to sulphur dioxide, pre-treatment with EP395 reduced extravasation of human serum albumin into the bronchoalveolar lavage fluid. These data demonstrate epithelial barrier-protecting effects of EP395, a promising candidate for treatment of chronic respiratory diseases without risk of bacterial resistance.</div></div>","PeriodicalId":20799,"journal":{"name":"Pulmonary pharmacology & therapeutics","volume":"90 ","pages":"Article 102363"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel macrolide, EP395, with reduced antibacterial activity and an enhancing effect on respiratory epithelial barrier\",\"authors\":\"Thorarinn Gudjonsson , Jon Petur Joelsson , Ari Jon Arason , Arni Asbjarnarson , Fridrik Runar Gardarsson , Fredrik Lehmann , Peter Teodorovic , Saevar Ingthorsson , Snaevar Sigurdsson , Bryndis Valdimarsdottir , Michael John Parnham , Clive Page , Jennifer Ann Kricker\",\"doi\":\"10.1016/j.pupt.2025.102363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epithelial barrier failure, a feature of several inflammatory lung diseases, contributes to exacerbations and disease progression. Acute exacerbations are often treated with macrolides, including azithromycin (AZM). In part, this is due to both primary antimicrobial and additional immunomodulatory actions, complemented by recently reported enhanced integrity of respiratory epithelial barriers. However, long-term “off label” use of macrolides is associated with increased bacterial resistance. We now introduce a new class of compounds, “Barriolides” that are analogues of AZM promoting airway epithelial barrier integrity <em>in vitro</em>, with negligible antibacterial activity. The lead compound is EP395 which does not affect cell viability up to 100 μM in VA10 bronchial epithelial cells. Treatment with EP395 for three weeks enhanced epithelial barrier integrity, measured by increased transepithelial electrical resistance, reduced paracellular flux in air-liquid interface culture and increased expression of tight junction proteins. EP395 also induced epidermal differentiation and formation of lamellar bodies, complemented by a relevant genetic footprint. In mice exposed to sulphur dioxide, pre-treatment with EP395 reduced extravasation of human serum albumin into the bronchoalveolar lavage fluid. These data demonstrate epithelial barrier-protecting effects of EP395, a promising candidate for treatment of chronic respiratory diseases without risk of bacterial resistance.</div></div>\",\"PeriodicalId\":20799,\"journal\":{\"name\":\"Pulmonary pharmacology & therapeutics\",\"volume\":\"90 \",\"pages\":\"Article 102363\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pulmonary pharmacology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1094553925000203\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary pharmacology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094553925000203","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A novel macrolide, EP395, with reduced antibacterial activity and an enhancing effect on respiratory epithelial barrier
Epithelial barrier failure, a feature of several inflammatory lung diseases, contributes to exacerbations and disease progression. Acute exacerbations are often treated with macrolides, including azithromycin (AZM). In part, this is due to both primary antimicrobial and additional immunomodulatory actions, complemented by recently reported enhanced integrity of respiratory epithelial barriers. However, long-term “off label” use of macrolides is associated with increased bacterial resistance. We now introduce a new class of compounds, “Barriolides” that are analogues of AZM promoting airway epithelial barrier integrity in vitro, with negligible antibacterial activity. The lead compound is EP395 which does not affect cell viability up to 100 μM in VA10 bronchial epithelial cells. Treatment with EP395 for three weeks enhanced epithelial barrier integrity, measured by increased transepithelial electrical resistance, reduced paracellular flux in air-liquid interface culture and increased expression of tight junction proteins. EP395 also induced epidermal differentiation and formation of lamellar bodies, complemented by a relevant genetic footprint. In mice exposed to sulphur dioxide, pre-treatment with EP395 reduced extravasation of human serum albumin into the bronchoalveolar lavage fluid. These data demonstrate epithelial barrier-protecting effects of EP395, a promising candidate for treatment of chronic respiratory diseases without risk of bacterial resistance.
期刊介绍:
Pulmonary Pharmacology and Therapeutics (formerly Pulmonary Pharmacology) is concerned with lung pharmacology from molecular to clinical aspects. The subject matter encompasses the major diseases of the lung including asthma, cystic fibrosis, pulmonary circulation, ARDS, carcinoma, bronchitis, emphysema and drug delivery. Laboratory and clinical research on man and animals will be considered including studies related to chemotherapy of cancer, tuberculosis and infection. In addition to original research papers the journal will include review articles and book reviews.
Research Areas Include:
• All major diseases of the lung
• Physiology
• Pathology
• Drug delivery
• Metabolism
• Pulmonary Toxicology.