{"title":"混合堆叠MnBi2Te4薄膜中的高陈氏数量子反常霍尔绝缘子","authors":"Jiaheng Li, Quansheng Wu, Hongming Weng","doi":"10.1038/s41535-025-00775-2","DOIUrl":null,"url":null,"abstract":"<p>Quantum anomalous Hall (QAH) insulators are characterized by vanishing longitudinal resistance and quantized Hall resistance in the absence of an external magnetic field. Among them, high-Chern-number QAH insulators offer multiple nondissipative current channels, making them crucial for the development of low-power-consumption electronics. Using first-principles calculations, we propose that high-Chern-number (<i>C</i> > 1) QAH insulators can be realized in MnBi<sub>2</sub>Te<sub>4</sub> (MBT) multilayer films through the combination of mixed stacking orders, eliminating the need for additional buffer layers. The underlying physical mechanism is validated by calculating real-space-resolved anomalous Hall conductivity (AHC). Local AHC is found to be predominantly located in regions with consecutive correct stacking orders, contributing to quasi-quantized AHC. Conversely, regions with consecutive incorrect stacking contribute minimally to the total AHC, which can be attributed to the varied interlayer coupling in different stacking configurations. Our work provides valuable insights into the design principle for achieving large Chern numbers, and highlights the role of stacking configurations in manipulating electronic and topological properties in MBT films and its derivatives.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"42 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Chern-number Quantum anomalous Hall insulators in mixing-stacked MnBi2Te4 thin films\",\"authors\":\"Jiaheng Li, Quansheng Wu, Hongming Weng\",\"doi\":\"10.1038/s41535-025-00775-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum anomalous Hall (QAH) insulators are characterized by vanishing longitudinal resistance and quantized Hall resistance in the absence of an external magnetic field. Among them, high-Chern-number QAH insulators offer multiple nondissipative current channels, making them crucial for the development of low-power-consumption electronics. Using first-principles calculations, we propose that high-Chern-number (<i>C</i> > 1) QAH insulators can be realized in MnBi<sub>2</sub>Te<sub>4</sub> (MBT) multilayer films through the combination of mixed stacking orders, eliminating the need for additional buffer layers. The underlying physical mechanism is validated by calculating real-space-resolved anomalous Hall conductivity (AHC). Local AHC is found to be predominantly located in regions with consecutive correct stacking orders, contributing to quasi-quantized AHC. Conversely, regions with consecutive incorrect stacking contribute minimally to the total AHC, which can be attributed to the varied interlayer coupling in different stacking configurations. Our work provides valuable insights into the design principle for achieving large Chern numbers, and highlights the role of stacking configurations in manipulating electronic and topological properties in MBT films and its derivatives.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00775-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00775-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Chern-number Quantum anomalous Hall insulators in mixing-stacked MnBi2Te4 thin films
Quantum anomalous Hall (QAH) insulators are characterized by vanishing longitudinal resistance and quantized Hall resistance in the absence of an external magnetic field. Among them, high-Chern-number QAH insulators offer multiple nondissipative current channels, making them crucial for the development of low-power-consumption electronics. Using first-principles calculations, we propose that high-Chern-number (C > 1) QAH insulators can be realized in MnBi2Te4 (MBT) multilayer films through the combination of mixed stacking orders, eliminating the need for additional buffer layers. The underlying physical mechanism is validated by calculating real-space-resolved anomalous Hall conductivity (AHC). Local AHC is found to be predominantly located in regions with consecutive correct stacking orders, contributing to quasi-quantized AHC. Conversely, regions with consecutive incorrect stacking contribute minimally to the total AHC, which can be attributed to the varied interlayer coupling in different stacking configurations. Our work provides valuable insights into the design principle for achieving large Chern numbers, and highlights the role of stacking configurations in manipulating electronic and topological properties in MBT films and its derivatives.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.