磁化自旋圆锥几何中Dirac和Weyl费米子的能量对称性破缺

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Abdullah Guvendi, Omar Mustafa
{"title":"磁化自旋圆锥几何中Dirac和Weyl费米子的能量对称性破缺","authors":"Abdullah Guvendi, Omar Mustafa","doi":"10.1002/adts.202500451","DOIUrl":null,"url":null,"abstract":"The dynamics of relativistic fermions are studied in the presence of an out-of-plane magnetic field and a spinning point-like defect, deriving exact solutions. These results show that the defect's spin (<span data-altimg=\"/cms/asset/04eda720-fc5d-4f6d-b163-e228ebfa7d15/adts70058-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"222\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0001.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"pi\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0001\" display=\"inline\" location=\"graphic/adts70058-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"pi\" data-semantic-type=\"identifier\">ϖ</mi>$\\varpi$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) breaks the symmetry between fermion and antifermion energy levels around zero energy. This symmetry breaking is influenced by the magnetic field strength (<span data-altimg=\"/cms/asset/4665fd11-5921-4db2-84b0-373f076b87c5/adts70058-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"223\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0002.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper B Subscript ring\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.02em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" size=\"s\"><mjx-c></mjx-c></mjx-mo></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0002\" display=\"inline\" location=\"graphic/adts70058-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper B Subscript ring\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"script\">B</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">∘</mo></msub>$\\mathcal {B}_{\\circ }$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) and the conical or anti-conical geometry. Energy levels are further modified by the fractionalized spin <span data-altimg=\"/cms/asset/5eb877df-eeae-483f-83c0-a33dade0c6ff/adts70058-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"224\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,7\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals s divided by alpha\" data-semantic-type=\"relseq\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.155em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0003\" display=\"inline\" location=\"graphic/adts70058-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,7\" data-semantic-content=\"3\" data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals s divided by alpha\" data-semantic-type=\"relseq\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi></mrow></mrow>$\\tilde{s} = s / \\alpha$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, where <span data-altimg=\"/cms/asset/11a50231-2d1f-40cc-9b75-fca0372cce3c/adts70058-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"225\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0004.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0004\" display=\"inline\" location=\"graphic/adts70058-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\">α</mi>$\\alpha$</annotation></semantics></math></mjx-assistive-mml></mjx-container> denotes the angular deficit or surplus, affecting conical or anti-conical backgrounds. While fractionalized spin has no effect when <span data-altimg=\"/cms/asset/69b5fd0d-1771-46bb-b867-952c0325de13/adts70058-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"226\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0005.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,11\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals minus StartAbsoluteValue s overTilde EndAbsoluteValue\" data-semantic-type=\"relseq\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.155em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"12\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"10\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"11\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"8\" data-semantic-content=\"5,9\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"neutral\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mover data-semantic-children=\"6,7\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.155em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0005\" display=\"inline\" location=\"graphic/adts70058-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,11\" data-semantic-content=\"3\" data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals minus StartAbsoluteValue s overTilde EndAbsoluteValue\" data-semantic-type=\"relseq\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"12\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-children=\"10\" data-semantic-content=\"4\" data-semantic-parent=\"12\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"11\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-children=\"8\" data-semantic-content=\"5,9\" data-semantic-parent=\"11\" data-semantic-role=\"neutral\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" stretchy=\"false\">|</mo><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"6,7\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-parent=\"8\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" stretchy=\"false\">|</mo></mrow></mrow></mrow>$\\tilde{s} = -|\\tilde{s}|$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, it significantly alters energy levels when <span data-altimg=\"/cms/asset/f99c3e24-fce2-4c02-82a6-bf11c18421d2/adts70058-math-0006.png\"></span><mjx-container ctxtmenu_counter=\"227\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0006.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,11\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals plus StartAbsoluteValue s overTilde EndAbsoluteValue\" data-semantic-type=\"relseq\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.155em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"12\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"10\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"positive\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,+\" data-semantic-parent=\"11\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"8\" data-semantic-content=\"5,9\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"neutral\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mover data-semantic-children=\"6,7\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.155em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0006\" display=\"inline\" location=\"graphic/adts70058-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,11\" data-semantic-content=\"3\" data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals plus StartAbsoluteValue s overTilde EndAbsoluteValue\" data-semantic-type=\"relseq\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"12\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-children=\"10\" data-semantic-content=\"4\" data-semantic-parent=\"12\" data-semantic-role=\"positive\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,+\" data-semantic-parent=\"11\" data-semantic-role=\"addition\" data-semantic-type=\"operator\">+</mo><mrow data-semantic-=\"\" data-semantic-children=\"8\" data-semantic-content=\"5,9\" data-semantic-parent=\"11\" data-semantic-role=\"neutral\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" stretchy=\"false\">|</mo><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"6,7\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-parent=\"8\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" stretchy=\"false\">|</mo></mrow></mrow></mrow>$\\tilde{s} = +|\\tilde{s}|$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. The defect's spin impacts fermion energy levels, leaving antifermion levels unchanged. For large <span data-altimg=\"/cms/asset/79b88eb3-8215-4c20-8209-eae6c4f4904d/adts70058-math-0007.png\"></span><mjx-container ctxtmenu_counter=\"228\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0007.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,7\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"pi overTilde equals pi divided by alpha\" data-semantic-type=\"relseq\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"greekletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.025em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0007\" display=\"inline\" location=\"graphic/adts70058-math-0007.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,7\" data-semantic-content=\"3\" data-semantic-role=\"equality\" data-semantic-speech=\"pi overTilde equals pi divided by alpha\" data-semantic-type=\"relseq\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"8\" data-semantic-role=\"greekletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ϖ</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ϖ</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi></mrow></mrow>$\\tilde{\\varpi } = \\varpi / \\alpha$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the defect's spin dominates, minimizing internal quantum effects. In the case of <span data-altimg=\"/cms/asset/c87cc602-984f-40dd-9c87-f28ab3cf3d57/adts70058-math-0008.png\"></span><mjx-container ctxtmenu_counter=\"229\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0008.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"pi equals 0\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0008\" display=\"inline\" location=\"graphic/adts70058-math-0008.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"equality\" data-semantic-speech=\"pi equals 0\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ϖ</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn></mrow>$\\varpi = 0$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <span data-altimg=\"/cms/asset/3573de52-75db-4ac9-b0dc-37d76a86dfa4/adts70058-math-0009.png\"></span><mjx-container ctxtmenu_counter=\"230\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0009.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"alpha equals 1\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0009\" display=\"inline\" location=\"graphic/adts70058-math-0009.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"equality\" data-semantic-speech=\"alpha equals 1\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow>$\\alpha = 1$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, Landau levels are recovered. These findings suggest the potential to fine-tune charge carrier dynamics in magnetized monolayer materials with spinning defects or vortices.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"33 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Symmetry Breaking of Dirac and Weyl Fermions in Magnetized Spinning Conical Geometries\",\"authors\":\"Abdullah Guvendi, Omar Mustafa\",\"doi\":\"10.1002/adts.202500451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of relativistic fermions are studied in the presence of an out-of-plane magnetic field and a spinning point-like defect, deriving exact solutions. These results show that the defect's spin (<span data-altimg=\\\"/cms/asset/04eda720-fc5d-4f6d-b163-e228ebfa7d15/adts70058-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"222\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts70058-math-0001.png\\\"><mjx-semantics><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"pi\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/adts70058-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"pi\\\" data-semantic-type=\\\"identifier\\\">ϖ</mi>$\\\\varpi$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) breaks the symmetry between fermion and antifermion energy levels around zero energy. This symmetry breaking is influenced by the magnetic field strength (<span data-altimg=\\\"/cms/asset/4665fd11-5921-4db2-84b0-373f076b87c5/adts70058-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"223\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts70058-math-0002.png\\\"><mjx-semantics><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"script upper B Subscript ring\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.02em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mo></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/adts70058-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"script upper B Subscript ring\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"script\\\">B</mi><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">∘</mo></msub>$\\\\mathcal {B}_{\\\\circ }$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) and the conical or anti-conical geometry. Energy levels are further modified by the fractionalized spin <span data-altimg=\\\"/cms/asset/5eb877df-eeae-483f-83c0-a33dade0c6ff/adts70058-math-0003.png\\\"></span><mjx-container ctxtmenu_counter=\\\"224\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts70058-math-0003.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"2,7\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"s overTilde equals s divided by alpha\\\" data-semantic-type=\\\"relseq\\\"><mjx-mover data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\\\"padding-left: 0.155em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"4,6\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/adts70058-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,7\\\" data-semantic-content=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"s overTilde equals s divided by alpha\\\" data-semantic-type=\\\"relseq\\\"><mover accent=\\\"true\\\" data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">s</mi><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\">∼</mo></mover><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"4,6\\\" data-semantic-content=\\\"5\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">s</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\">/</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">α</mi></mrow></mrow>$\\\\tilde{s} = s / \\\\alpha$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, where <span data-altimg=\\\"/cms/asset/11a50231-2d1f-40cc-9b75-fca0372cce3c/adts70058-math-0004.png\\\"></span><mjx-container ctxtmenu_counter=\\\"225\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts70058-math-0004.png\\\"><mjx-semantics><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"alpha\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/adts70058-math-0004.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"alpha\\\" data-semantic-type=\\\"identifier\\\">α</mi>$\\\\alpha$</annotation></semantics></math></mjx-assistive-mml></mjx-container> denotes the angular deficit or surplus, affecting conical or anti-conical backgrounds. While fractionalized spin has no effect when <span data-altimg=\\\"/cms/asset/69b5fd0d-1771-46bb-b867-952c0325de13/adts70058-math-0005.png\\\"></span><mjx-container ctxtmenu_counter=\\\"226\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts70058-math-0005.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"2,11\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"s overTilde equals minus StartAbsoluteValue s overTilde EndAbsoluteValue\\\" data-semantic-type=\\\"relseq\\\"><mjx-mover data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\\\"padding-left: 0.155em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"10\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"8\\\" data-semantic-content=\\\"5,9\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mover data-semantic-children=\\\"6,7\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\\\"padding-left: 0.155em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/adts70058-math-0005.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,11\\\" data-semantic-content=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"s overTilde equals minus StartAbsoluteValue s overTilde EndAbsoluteValue\\\" data-semantic-type=\\\"relseq\\\"><mover accent=\\\"true\\\" data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">s</mi><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\">∼</mo></mover><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"10\\\" data-semantic-content=\\\"4\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\">−</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"8\\\" data-semantic-content=\\\"5,9\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">|</mo><mover accent=\\\"true\\\" data-semantic-=\\\"\\\" data-semantic-children=\\\"6,7\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">s</mi><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\">∼</mo></mover><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">|</mo></mrow></mrow></mrow>$\\\\tilde{s} = -|\\\\tilde{s}|$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, it significantly alters energy levels when <span data-altimg=\\\"/cms/asset/f99c3e24-fce2-4c02-82a6-bf11c18421d2/adts70058-math-0006.png\\\"></span><mjx-container ctxtmenu_counter=\\\"227\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts70058-math-0006.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"2,11\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"s overTilde equals plus StartAbsoluteValue s overTilde EndAbsoluteValue\\\" data-semantic-type=\\\"relseq\\\"><mjx-mover data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\\\"padding-left: 0.155em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"10\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"positive\\\" data-semantic-type=\\\"prefixop\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,+\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"8\\\" data-semantic-content=\\\"5,9\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mover data-semantic-children=\\\"6,7\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\\\"padding-left: 0.155em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/adts70058-math-0006.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,11\\\" data-semantic-content=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"s overTilde equals plus StartAbsoluteValue s overTilde EndAbsoluteValue\\\" data-semantic-type=\\\"relseq\\\"><mover accent=\\\"true\\\" data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">s</mi><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\">∼</mo></mover><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"10\\\" data-semantic-content=\\\"4\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"positive\\\" data-semantic-type=\\\"prefixop\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"prefixop,+\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\">+</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"8\\\" data-semantic-content=\\\"5,9\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">|</mo><mover accent=\\\"true\\\" data-semantic-=\\\"\\\" data-semantic-children=\\\"6,7\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">s</mi><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\">∼</mo></mover><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">|</mo></mrow></mrow></mrow>$\\\\tilde{s} = +|\\\\tilde{s}|$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. The defect's spin impacts fermion energy levels, leaving antifermion levels unchanged. For large <span data-altimg=\\\"/cms/asset/79b88eb3-8215-4c20-8209-eae6c4f4904d/adts70058-math-0007.png\\\"></span><mjx-container ctxtmenu_counter=\\\"228\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts70058-math-0007.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"2,7\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"pi overTilde equals pi divided by alpha\\\" data-semantic-type=\\\"relseq\\\"><mjx-mover data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.105em; padding-left: 0.025em; margin-bottom: -0.133em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"4,6\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0007\\\" display=\\\"inline\\\" location=\\\"graphic/adts70058-math-0007.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,7\\\" data-semantic-content=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"pi overTilde equals pi divided by alpha\\\" data-semantic-type=\\\"relseq\\\"><mover accent=\\\"true\\\" data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"overscore\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">ϖ</mi><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\">∼</mo></mover><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"4,6\\\" data-semantic-content=\\\"5\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">ϖ</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\">/</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">α</mi></mrow></mrow>$\\\\tilde{\\\\varpi } = \\\\varpi / \\\\alpha$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the defect's spin dominates, minimizing internal quantum effects. In the case of <span data-altimg=\\\"/cms/asset/c87cc602-984f-40dd-9c87-f28ab3cf3d57/adts70058-math-0008.png\\\"></span><mjx-container ctxtmenu_counter=\\\"229\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts70058-math-0008.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"pi equals 0\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0008\\\" display=\\\"inline\\\" location=\\\"graphic/adts70058-math-0008.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"pi equals 0\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">ϖ</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">0</mn></mrow>$\\\\varpi = 0$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <span data-altimg=\\\"/cms/asset/3573de52-75db-4ac9-b0dc-37d76a86dfa4/adts70058-math-0009.png\\\"></span><mjx-container ctxtmenu_counter=\\\"230\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts70058-math-0009.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"alpha equals 1\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0009\\\" display=\\\"inline\\\" location=\\\"graphic/adts70058-math-0009.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"alpha equals 1\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">α</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></mrow>$\\\\alpha = 1$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, Landau levels are recovered. These findings suggest the potential to fine-tune charge carrier dynamics in magnetized monolayer materials with spinning defects or vortices.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500451\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500451","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

研究了相对论性费米子在面外磁场和自旋点状缺陷存在下的动力学特性,得到了精确解。这些结果表明,缺陷的自旋($\varpi$)打破了费米子和反费米子能级在零能量附近的对称性。这种对称性破坏受磁场强度(B°$\mathcal {B}_{\circ }$)和圆锥形或反圆锥形几何形状的影响。分数化的自旋s ~ =s/α $\tilde{s} = s / \alpha$进一步改变了能级,其中α $\alpha$表示角亏损或盈余,影响锥形或反锥形背景。当s ~ =−|s ~ | $\tilde{s} = -|\tilde{s}|$时,分数化自旋没有影响,但当s ~ =+|s ~ | $\tilde{s} = +|\tilde{s}|$时,分数化自旋显著改变能级。该缺陷的自旋影响费米子能级,使反费米子能级保持不变。对于较大的τ ~ = τ /α $\tilde{\varpi } = \varpi / \alpha$,缺陷的自旋占主导地位,使内部量子效应最小化。在ω =0 $\varpi = 0$和ω =1 $\alpha = 1$的情况下,恢复朗道水平。这些发现表明,在具有自旋缺陷或涡旋的磁化单层材料中,有可能微调载流子动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Symmetry Breaking of Dirac and Weyl Fermions in Magnetized Spinning Conical Geometries
The dynamics of relativistic fermions are studied in the presence of an out-of-plane magnetic field and a spinning point-like defect, deriving exact solutions. These results show that the defect's spin (ϖ$\varpi$) breaks the symmetry between fermion and antifermion energy levels around zero energy. This symmetry breaking is influenced by the magnetic field strength (B$\mathcal {B}_{\circ }$) and the conical or anti-conical geometry. Energy levels are further modified by the fractionalized spin s=s/α$\tilde{s} = s / \alpha$, where α$\alpha$ denotes the angular deficit or surplus, affecting conical or anti-conical backgrounds. While fractionalized spin has no effect when s=|s|$\tilde{s} = -|\tilde{s}|$, it significantly alters energy levels when s=+|s|$\tilde{s} = +|\tilde{s}|$. The defect's spin impacts fermion energy levels, leaving antifermion levels unchanged. For large ϖ=ϖ/α$\tilde{\varpi } = \varpi / \alpha$, the defect's spin dominates, minimizing internal quantum effects. In the case of ϖ=0$\varpi = 0$ and α=1$\alpha = 1$, Landau levels are recovered. These findings suggest the potential to fine-tune charge carrier dynamics in magnetized monolayer materials with spinning defects or vortices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信