使用临床记录数据的机器学习预测急性缺血性卒中的半影核心不匹配

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Shaun Kohli, Parul Agarwal, “Andy” Ho Wing Chan, Asala Erekat, Girish Nadkarni, Benjamin Kummer
{"title":"使用临床记录数据的机器学习预测急性缺血性卒中的半影核心不匹配","authors":"Shaun Kohli, Parul Agarwal, “Andy” Ho Wing Chan, Asala Erekat, Girish Nadkarni, Benjamin Kummer","doi":"10.1038/s41746-025-01703-1","DOIUrl":null,"url":null,"abstract":"<p>In acute ischemic stroke due to large-vessel occlusion (AIS-LVO), late-window endovascular thrombectomy (EVT) decisions depend on penumbra-to-core (P:C) mismatch from computed tomographic perfusion (CTP). We developed multiple machine learning (ML) models to predict P:C ratios from a retrospectively-identified cohort of AIS-LVO patients who underwent CTP within 30 min of initial neuroimaging, using non-imaging electronic health record (EHR) data available prior to CTP evaluation. We extracted structured data and free-text clinical notes from the EHR, generating document embeddings as sums of BioWordVec vectors weighted by term-frequency-inverse-document-frequency scores. We identified 120 patients; an extreme-gradient-boosting model classified P:C ratios as ≥ or &lt;1.8, achieving an AUROC of 0.80 (95% CI 0.57–0.92) with optimal performance using text limited to 500 characters. Sensitivity was 0.80, specificity 0.66, and F1 score 0.86. Our findings suggest that ML models leveraging real-world non-imaging data can potentially aid LVO-AIS triage, though further validation is needed.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"55 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning to predict penumbra core mismatch in acute ischemic stroke using clinical note data\",\"authors\":\"Shaun Kohli, Parul Agarwal, “Andy” Ho Wing Chan, Asala Erekat, Girish Nadkarni, Benjamin Kummer\",\"doi\":\"10.1038/s41746-025-01703-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In acute ischemic stroke due to large-vessel occlusion (AIS-LVO), late-window endovascular thrombectomy (EVT) decisions depend on penumbra-to-core (P:C) mismatch from computed tomographic perfusion (CTP). We developed multiple machine learning (ML) models to predict P:C ratios from a retrospectively-identified cohort of AIS-LVO patients who underwent CTP within 30 min of initial neuroimaging, using non-imaging electronic health record (EHR) data available prior to CTP evaluation. We extracted structured data and free-text clinical notes from the EHR, generating document embeddings as sums of BioWordVec vectors weighted by term-frequency-inverse-document-frequency scores. We identified 120 patients; an extreme-gradient-boosting model classified P:C ratios as ≥ or &lt;1.8, achieving an AUROC of 0.80 (95% CI 0.57–0.92) with optimal performance using text limited to 500 characters. Sensitivity was 0.80, specificity 0.66, and F1 score 0.86. Our findings suggest that ML models leveraging real-world non-imaging data can potentially aid LVO-AIS triage, though further validation is needed.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01703-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01703-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

在大血管闭塞(AIS-LVO)引起的急性缺血性卒中中,窗后血管内血栓切除术(EVT)的决定取决于计算机断层扫描灌注(CTP)的半暗-核(P:C)不匹配。我们开发了多种机器学习(ML)模型,利用在CTP评估之前可用的非成像电子健康记录(EHR)数据,对在初始神经成像30分钟内接受CTP的AIS-LVO患者进行回顾性鉴定的队列,预测P:C比率。我们从电子病历中提取结构化数据和自由文本临床记录,生成文档嵌入,作为BioWordVec向量的总和,以术语频率-逆文档频率得分加权。我们确定了120例患者;极端梯度增强模型将P:C比率分类为≥或<;1.8,在文本限制为500个字符的情况下,AUROC为0.80 (95% CI 0.57-0.92)。敏感性0.80,特异性0.66,F1评分0.86。我们的研究结果表明,利用真实世界非成像数据的ML模型可以潜在地帮助LVO-AIS分类,尽管需要进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning to predict penumbra core mismatch in acute ischemic stroke using clinical note data

Machine learning to predict penumbra core mismatch in acute ischemic stroke using clinical note data

In acute ischemic stroke due to large-vessel occlusion (AIS-LVO), late-window endovascular thrombectomy (EVT) decisions depend on penumbra-to-core (P:C) mismatch from computed tomographic perfusion (CTP). We developed multiple machine learning (ML) models to predict P:C ratios from a retrospectively-identified cohort of AIS-LVO patients who underwent CTP within 30 min of initial neuroimaging, using non-imaging electronic health record (EHR) data available prior to CTP evaluation. We extracted structured data and free-text clinical notes from the EHR, generating document embeddings as sums of BioWordVec vectors weighted by term-frequency-inverse-document-frequency scores. We identified 120 patients; an extreme-gradient-boosting model classified P:C ratios as ≥ or <1.8, achieving an AUROC of 0.80 (95% CI 0.57–0.92) with optimal performance using text limited to 500 characters. Sensitivity was 0.80, specificity 0.66, and F1 score 0.86. Our findings suggest that ML models leveraging real-world non-imaging data can potentially aid LVO-AIS triage, though further validation is needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信