学习高斯混合稀疏正则化反问题

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Giovanni S Alberti, Luca Ratti, Matteo Santacesaria, Silvia Sciutto
{"title":"学习高斯混合稀疏正则化反问题","authors":"Giovanni S Alberti, Luca Ratti, Matteo Santacesaria, Silvia Sciutto","doi":"10.1093/imanum/draf037","DOIUrl":null,"url":null,"abstract":"In inverse problems it is widely recognized that the incorporation of a sparsity prior yields a regularization effect on the solution. This approach is grounded on the a priori assumption that the unknown can be appropriately represented in a basis with a limited number of significant components while most coefficients are close to zero. This occurrence is frequently observed in real-world scenarios, such as with piecewise smooth signals. In this study we propose a probabilistic sparsity prior formulated as a mixture of degenerate Gaussians, capable of modelling sparsity with respect to a generic basis. Under this premise we design a neural network that can be interpreted as the Bayes estimator for linear inverse problems. Additionally, we put forth both a supervised and an unsupervised training strategy to estimate the parameters of this network. To evaluate the effectiveness of our approach we conduct a numerical comparison with commonly employed sparsity-promoting regularization techniques, namely Least Absolute Shrinkage and Selection Operator (LASSO), group LASSO, iterative hard thresholding and sparse coding/dictionary learning. Notably, our reconstructions consistently exhibit lower mean square error values across all one-dimensional datasets utilized for the comparisons, even in cases where the datasets significantly deviate from a Gaussian mixture model.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"39 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning a Gaussian mixture for sparsity regularization in inverse problems\",\"authors\":\"Giovanni S Alberti, Luca Ratti, Matteo Santacesaria, Silvia Sciutto\",\"doi\":\"10.1093/imanum/draf037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In inverse problems it is widely recognized that the incorporation of a sparsity prior yields a regularization effect on the solution. This approach is grounded on the a priori assumption that the unknown can be appropriately represented in a basis with a limited number of significant components while most coefficients are close to zero. This occurrence is frequently observed in real-world scenarios, such as with piecewise smooth signals. In this study we propose a probabilistic sparsity prior formulated as a mixture of degenerate Gaussians, capable of modelling sparsity with respect to a generic basis. Under this premise we design a neural network that can be interpreted as the Bayes estimator for linear inverse problems. Additionally, we put forth both a supervised and an unsupervised training strategy to estimate the parameters of this network. To evaluate the effectiveness of our approach we conduct a numerical comparison with commonly employed sparsity-promoting regularization techniques, namely Least Absolute Shrinkage and Selection Operator (LASSO), group LASSO, iterative hard thresholding and sparse coding/dictionary learning. Notably, our reconstructions consistently exhibit lower mean square error values across all one-dimensional datasets utilized for the comparisons, even in cases where the datasets significantly deviate from a Gaussian mixture model.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf037\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf037","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在反问题中,人们普遍认识到,稀疏性先验的结合会对解产生正则化效应。这种方法基于先验假设,即在大多数系数接近于零的情况下,未知可以在具有有限数量的有效成分的基中适当地表示。这种情况在现实场景中经常观察到,例如分段平滑信号。在这项研究中,我们提出了一个概率稀疏性先验公式作为退化高斯的混合物,能够建模稀疏性相对于一个通用的基础。在此前提下,我们设计了一个神经网络,它可以被解释为线性逆问题的贝叶斯估计。此外,我们提出了一种有监督和无监督的训练策略来估计该网络的参数。为了评估我们的方法的有效性,我们与常用的促进稀疏性的正则化技术进行了数值比较,即最小绝对收缩和选择算子(LASSO),组LASSO,迭代硬阈值和稀疏编码/字典学习。值得注意的是,我们的重建在用于比较的所有一维数据集中始终显示出较低的均方误差值,即使在数据集明显偏离高斯混合模型的情况下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning a Gaussian mixture for sparsity regularization in inverse problems
In inverse problems it is widely recognized that the incorporation of a sparsity prior yields a regularization effect on the solution. This approach is grounded on the a priori assumption that the unknown can be appropriately represented in a basis with a limited number of significant components while most coefficients are close to zero. This occurrence is frequently observed in real-world scenarios, such as with piecewise smooth signals. In this study we propose a probabilistic sparsity prior formulated as a mixture of degenerate Gaussians, capable of modelling sparsity with respect to a generic basis. Under this premise we design a neural network that can be interpreted as the Bayes estimator for linear inverse problems. Additionally, we put forth both a supervised and an unsupervised training strategy to estimate the parameters of this network. To evaluate the effectiveness of our approach we conduct a numerical comparison with commonly employed sparsity-promoting regularization techniques, namely Least Absolute Shrinkage and Selection Operator (LASSO), group LASSO, iterative hard thresholding and sparse coding/dictionary learning. Notably, our reconstructions consistently exhibit lower mean square error values across all one-dimensional datasets utilized for the comparisons, even in cases where the datasets significantly deviate from a Gaussian mixture model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信