Ka Man Jasmine Yu, Brock D. Weers, Brian A. McKinley, Priscilla D. Glenn, Evan Kurtz, William L. Rooney, John E. Mullet
{"title":"由于木质化细胞壁的持续积累和参与细胞壁生物合成的基因的复杂调控,生物能源高粱的茎密度在节间延长后增加了三倍。","authors":"Ka Man Jasmine Yu, Brock D. Weers, Brian A. McKinley, Priscilla D. Glenn, Evan Kurtz, William L. Rooney, John E. Mullet","doi":"10.1186/s13068-025-02659-w","DOIUrl":null,"url":null,"abstract":"<div><p>Bioenergy sorghum is a highly productive drought tolerant C4 grass that accumulates ~ 80% of its harvested biomass in ~ 4 m long stems comprised of > 40 internodes that develop sequentially during an extended vegetative growth phase. Following elongation of each internode, internode density increases ~ threefold to fourfold primarily due to the accumulation of cell walls composed of cellulose, glucuronoarabinoxylan and lignin. Lignin accumulates initially on cell walls of sclerenchyma cells surrounding vascular bundles and later on cell walls of the stem rind and stem core pith parenchyma. Many genes involved in cell wall biosynthesis were expressed continuously during the stem internode densification process whereas others showed dynamic patterns of expression (high to low, low to high). Several <i>CESA</i> genes involved in primary cell wall cellulose synthesis were expressed in the stem rind and core throughout the stem densification phase. In contrast, <i>CESA</i> genes involved in secondary cell wall biogenesis were expressed continuously in the stem rind but downregulated in the stem core shortly after completion of internode elongation. Overall, accumulation of cell wall biomass in elongated internodes during stem densification increases stem mechanical strength and biomass bulk density while modifying biomass composition in ways that could impact the amount and release of cellulosic sugars and lignin-derived bioproducts.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioenergy sorghum stem density increases threefold following internode elongation due to continued accumulation of lignified cell walls and complex regulation of genes involved in cell wall biosynthesis\",\"authors\":\"Ka Man Jasmine Yu, Brock D. Weers, Brian A. McKinley, Priscilla D. Glenn, Evan Kurtz, William L. Rooney, John E. Mullet\",\"doi\":\"10.1186/s13068-025-02659-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bioenergy sorghum is a highly productive drought tolerant C4 grass that accumulates ~ 80% of its harvested biomass in ~ 4 m long stems comprised of > 40 internodes that develop sequentially during an extended vegetative growth phase. Following elongation of each internode, internode density increases ~ threefold to fourfold primarily due to the accumulation of cell walls composed of cellulose, glucuronoarabinoxylan and lignin. Lignin accumulates initially on cell walls of sclerenchyma cells surrounding vascular bundles and later on cell walls of the stem rind and stem core pith parenchyma. Many genes involved in cell wall biosynthesis were expressed continuously during the stem internode densification process whereas others showed dynamic patterns of expression (high to low, low to high). Several <i>CESA</i> genes involved in primary cell wall cellulose synthesis were expressed in the stem rind and core throughout the stem densification phase. In contrast, <i>CESA</i> genes involved in secondary cell wall biogenesis were expressed continuously in the stem rind but downregulated in the stem core shortly after completion of internode elongation. Overall, accumulation of cell wall biomass in elongated internodes during stem densification increases stem mechanical strength and biomass bulk density while modifying biomass composition in ways that could impact the amount and release of cellulosic sugars and lignin-derived bioproducts.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-025-02659-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02659-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Bioenergy sorghum stem density increases threefold following internode elongation due to continued accumulation of lignified cell walls and complex regulation of genes involved in cell wall biosynthesis
Bioenergy sorghum is a highly productive drought tolerant C4 grass that accumulates ~ 80% of its harvested biomass in ~ 4 m long stems comprised of > 40 internodes that develop sequentially during an extended vegetative growth phase. Following elongation of each internode, internode density increases ~ threefold to fourfold primarily due to the accumulation of cell walls composed of cellulose, glucuronoarabinoxylan and lignin. Lignin accumulates initially on cell walls of sclerenchyma cells surrounding vascular bundles and later on cell walls of the stem rind and stem core pith parenchyma. Many genes involved in cell wall biosynthesis were expressed continuously during the stem internode densification process whereas others showed dynamic patterns of expression (high to low, low to high). Several CESA genes involved in primary cell wall cellulose synthesis were expressed in the stem rind and core throughout the stem densification phase. In contrast, CESA genes involved in secondary cell wall biogenesis were expressed continuously in the stem rind but downregulated in the stem core shortly after completion of internode elongation. Overall, accumulation of cell wall biomass in elongated internodes during stem densification increases stem mechanical strength and biomass bulk density while modifying biomass composition in ways that could impact the amount and release of cellulosic sugars and lignin-derived bioproducts.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis