{"title":"高维多响应部分泛函线性回归。","authors":"Xiong Cai, Jiguo Cao, Xingyu Yan, Peng Zhao","doi":"10.1002/sim.70140","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new class of high-dimensional multiresponse partially functional linear regressions (MR-PFLRs) to investigate the relationship between scalar responses and a set of explanatory variables, which include both functional and scalar types. In this framework, both the dimensionality of the responses and the number of scalar covariates can diverge to infinity. To account for within-subject correlation, we develop a functional principal component analysis (FPCA)-based penalized weighted least squares estimation procedure. In this approach, the precision matrix is estimated using penalized likelihoods, and the regression coefficients are then estimated through the penalized weighted least squares method, with the precision matrix serving as the weight. This method allows for the simultaneous estimation of both functional and scalar regression coefficients, as well as the precision matrix, while identifying significant features. Under mild conditions, we establish the consistency, rates of convergence, and oracle properties of the proposed estimators. Simulation studies demonstrate the finite-sample performance of our estimation method. Additionally, the practical utility of the MR-PFLR model is showcased through an application to Alzheimer's disease neuroimaging initiative (ADNI) data.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 13-14","pages":"e70140"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12138746/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-Dimensional Multiresponse Partially Functional Linear Regression.\",\"authors\":\"Xiong Cai, Jiguo Cao, Xingyu Yan, Peng Zhao\",\"doi\":\"10.1002/sim.70140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a new class of high-dimensional multiresponse partially functional linear regressions (MR-PFLRs) to investigate the relationship between scalar responses and a set of explanatory variables, which include both functional and scalar types. In this framework, both the dimensionality of the responses and the number of scalar covariates can diverge to infinity. To account for within-subject correlation, we develop a functional principal component analysis (FPCA)-based penalized weighted least squares estimation procedure. In this approach, the precision matrix is estimated using penalized likelihoods, and the regression coefficients are then estimated through the penalized weighted least squares method, with the precision matrix serving as the weight. This method allows for the simultaneous estimation of both functional and scalar regression coefficients, as well as the precision matrix, while identifying significant features. Under mild conditions, we establish the consistency, rates of convergence, and oracle properties of the proposed estimators. Simulation studies demonstrate the finite-sample performance of our estimation method. Additionally, the practical utility of the MR-PFLR model is showcased through an application to Alzheimer's disease neuroimaging initiative (ADNI) data.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\"44 13-14\",\"pages\":\"e70140\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12138746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.70140\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
High-Dimensional Multiresponse Partially Functional Linear Regression.
We propose a new class of high-dimensional multiresponse partially functional linear regressions (MR-PFLRs) to investigate the relationship between scalar responses and a set of explanatory variables, which include both functional and scalar types. In this framework, both the dimensionality of the responses and the number of scalar covariates can diverge to infinity. To account for within-subject correlation, we develop a functional principal component analysis (FPCA)-based penalized weighted least squares estimation procedure. In this approach, the precision matrix is estimated using penalized likelihoods, and the regression coefficients are then estimated through the penalized weighted least squares method, with the precision matrix serving as the weight. This method allows for the simultaneous estimation of both functional and scalar regression coefficients, as well as the precision matrix, while identifying significant features. Under mild conditions, we establish the consistency, rates of convergence, and oracle properties of the proposed estimators. Simulation studies demonstrate the finite-sample performance of our estimation method. Additionally, the practical utility of the MR-PFLR model is showcased through an application to Alzheimer's disease neuroimaging initiative (ADNI) data.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.