高维多响应部分泛函线性回归。

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xiong Cai, Jiguo Cao, Xingyu Yan, Peng Zhao
{"title":"高维多响应部分泛函线性回归。","authors":"Xiong Cai, Jiguo Cao, Xingyu Yan, Peng Zhao","doi":"10.1002/sim.70140","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new class of high-dimensional multiresponse partially functional linear regressions (MR-PFLRs) to investigate the relationship between scalar responses and a set of explanatory variables, which include both functional and scalar types. In this framework, both the dimensionality of the responses and the number of scalar covariates can diverge to infinity. To account for within-subject correlation, we develop a functional principal component analysis (FPCA)-based penalized weighted least squares estimation procedure. In this approach, the precision matrix is estimated using penalized likelihoods, and the regression coefficients are then estimated through the penalized weighted least squares method, with the precision matrix serving as the weight. This method allows for the simultaneous estimation of both functional and scalar regression coefficients, as well as the precision matrix, while identifying significant features. Under mild conditions, we establish the consistency, rates of convergence, and oracle properties of the proposed estimators. Simulation studies demonstrate the finite-sample performance of our estimation method. Additionally, the practical utility of the MR-PFLR model is showcased through an application to Alzheimer's disease neuroimaging initiative (ADNI) data.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 13-14","pages":"e70140"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12138746/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-Dimensional Multiresponse Partially Functional Linear Regression.\",\"authors\":\"Xiong Cai, Jiguo Cao, Xingyu Yan, Peng Zhao\",\"doi\":\"10.1002/sim.70140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a new class of high-dimensional multiresponse partially functional linear regressions (MR-PFLRs) to investigate the relationship between scalar responses and a set of explanatory variables, which include both functional and scalar types. In this framework, both the dimensionality of the responses and the number of scalar covariates can diverge to infinity. To account for within-subject correlation, we develop a functional principal component analysis (FPCA)-based penalized weighted least squares estimation procedure. In this approach, the precision matrix is estimated using penalized likelihoods, and the regression coefficients are then estimated through the penalized weighted least squares method, with the precision matrix serving as the weight. This method allows for the simultaneous estimation of both functional and scalar regression coefficients, as well as the precision matrix, while identifying significant features. Under mild conditions, we establish the consistency, rates of convergence, and oracle properties of the proposed estimators. Simulation studies demonstrate the finite-sample performance of our estimation method. Additionally, the practical utility of the MR-PFLR model is showcased through an application to Alzheimer's disease neuroimaging initiative (ADNI) data.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\"44 13-14\",\"pages\":\"e70140\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12138746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.70140\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一类新的高维多响应部分泛函线性回归(MR-PFLRs)来研究标量响应与一组解释变量之间的关系,其中包括函数型和标量型。在这个框架中,响应的维数和标量协变量的数量都可以发散到无穷大。为了考虑主题内相关性,我们开发了基于功能主成分分析(FPCA)的惩罚加权最小二乘估计程序。该方法使用惩罚似然估计精度矩阵,然后使用惩罚加权最小二乘法估计回归系数,以精度矩阵作为权值。该方法允许同时估计函数和标量回归系数,以及精度矩阵,同时识别重要特征。在温和的条件下,我们建立了所提出的估计量的一致性、收敛率和oracle性质。仿真研究证明了该估计方法的有限样本性能。此外,MR-PFLR模型的实际效用通过阿尔茨海默病神经成像倡议(ADNI)数据的应用得到了展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Dimensional Multiresponse Partially Functional Linear Regression.

We propose a new class of high-dimensional multiresponse partially functional linear regressions (MR-PFLRs) to investigate the relationship between scalar responses and a set of explanatory variables, which include both functional and scalar types. In this framework, both the dimensionality of the responses and the number of scalar covariates can diverge to infinity. To account for within-subject correlation, we develop a functional principal component analysis (FPCA)-based penalized weighted least squares estimation procedure. In this approach, the precision matrix is estimated using penalized likelihoods, and the regression coefficients are then estimated through the penalized weighted least squares method, with the precision matrix serving as the weight. This method allows for the simultaneous estimation of both functional and scalar regression coefficients, as well as the precision matrix, while identifying significant features. Under mild conditions, we establish the consistency, rates of convergence, and oracle properties of the proposed estimators. Simulation studies demonstrate the finite-sample performance of our estimation method. Additionally, the practical utility of the MR-PFLR model is showcased through an application to Alzheimer's disease neuroimaging initiative (ADNI) data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信