Andrea L Bertozzi, Nadejda Drenska, Jonas Latz, Matthew Thorpe
{"title":"数据科学中的偏微分方程。","authors":"Andrea L Bertozzi, Nadejda Drenska, Jonas Latz, Matthew Thorpe","doi":"10.1098/rsta.2024.0249","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of artificial intelligence and machine learning has led to significant technological and scientific progress, but also to new challenges. Partial differential equations, usually used to model systems in the sciences, have shown to be useful tools in a variety of tasks in the data sciences, be it just as physical models to describe physical data, as more general models to replace or construct artificial neural networks, or as analytical tools to analyse stochastic processes appearing in the training of machine-learning models. This article acts as an introduction of a theme issue covering synergies and intersections of partial differential equations and data science. We briefly review some aspects of these synergies and intersections in this article and end with an editorial foreword to the issue.This article is part of the theme issue 'Partial differential equations in data science'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2298","pages":"20240249"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162097/pdf/","citationCount":"0","resultStr":"{\"title\":\"Partial differential equations in data science.\",\"authors\":\"Andrea L Bertozzi, Nadejda Drenska, Jonas Latz, Matthew Thorpe\",\"doi\":\"10.1098/rsta.2024.0249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advent of artificial intelligence and machine learning has led to significant technological and scientific progress, but also to new challenges. Partial differential equations, usually used to model systems in the sciences, have shown to be useful tools in a variety of tasks in the data sciences, be it just as physical models to describe physical data, as more general models to replace or construct artificial neural networks, or as analytical tools to analyse stochastic processes appearing in the training of machine-learning models. This article acts as an introduction of a theme issue covering synergies and intersections of partial differential equations and data science. We briefly review some aspects of these synergies and intersections in this article and end with an editorial foreword to the issue.This article is part of the theme issue 'Partial differential equations in data science'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2298\",\"pages\":\"20240249\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0249\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0249","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The advent of artificial intelligence and machine learning has led to significant technological and scientific progress, but also to new challenges. Partial differential equations, usually used to model systems in the sciences, have shown to be useful tools in a variety of tasks in the data sciences, be it just as physical models to describe physical data, as more general models to replace or construct artificial neural networks, or as analytical tools to analyse stochastic processes appearing in the training of machine-learning models. This article acts as an introduction of a theme issue covering synergies and intersections of partial differential equations and data science. We briefly review some aspects of these synergies and intersections in this article and end with an editorial foreword to the issue.This article is part of the theme issue 'Partial differential equations in data science'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.