通过无限维抽样计算偏微分方程的平稳解的个数。

IF 3.7 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Martin Kolodziejczyk, Michela Ottobre, Gideon Simpson
{"title":"通过无限维抽样计算偏微分方程的平稳解的个数。","authors":"Martin Kolodziejczyk, Michela Ottobre, Gideon Simpson","doi":"10.1098/rsta.2024.0239","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is concerned with the problem of counting solutions of stationary nonlinear Partial Differential Equations (PDEs) when the PDE is known to admit more than one solution. We suggest tackling the problem via a sampling-based approach. The method allows one to find solutions that are stable, in the sense that they are stable equilibria of the associated time-dependent PDE. We test our proposed methodology on the McKean-Vlasov PDE, more precisely on the problem of determining the number of stationary solutions of the McKean-Vlasov equation.This article is part of the theme issue 'Partial differential equations in data science'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2298","pages":"20240239"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting the number of stationary solutions of partial differential equations via infinite dimensional sampling.\",\"authors\":\"Martin Kolodziejczyk, Michela Ottobre, Gideon Simpson\",\"doi\":\"10.1098/rsta.2024.0239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper is concerned with the problem of counting solutions of stationary nonlinear Partial Differential Equations (PDEs) when the PDE is known to admit more than one solution. We suggest tackling the problem via a sampling-based approach. The method allows one to find solutions that are stable, in the sense that they are stable equilibria of the associated time-dependent PDE. We test our proposed methodology on the McKean-Vlasov PDE, more precisely on the problem of determining the number of stationary solutions of the McKean-Vlasov equation.This article is part of the theme issue 'Partial differential equations in data science'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2298\",\"pages\":\"20240239\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0239\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0239","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了当已知平稳非线性偏微分方程有多个解时的解计数问题。我们建议通过抽样的方法来解决这个问题。该方法允许人们找到稳定的解,因为它们是相关的随时间变化的偏微分方程的稳定平衡点。我们在McKean-Vlasov PDE上测试了我们提出的方法,更准确地说,是在确定McKean-Vlasov方程的平稳解的数量的问题上。本文是“数据科学中的偏微分方程”主题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting the number of stationary solutions of partial differential equations via infinite dimensional sampling.

This paper is concerned with the problem of counting solutions of stationary nonlinear Partial Differential Equations (PDEs) when the PDE is known to admit more than one solution. We suggest tackling the problem via a sampling-based approach. The method allows one to find solutions that are stable, in the sense that they are stable equilibria of the associated time-dependent PDE. We test our proposed methodology on the McKean-Vlasov PDE, more precisely on the problem of determining the number of stationary solutions of the McKean-Vlasov equation.This article is part of the theme issue 'Partial differential equations in data science'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信