Helen M. Collins , L. Sophie Gullino , Cara Fuller , Raquel Pinacho , David M. Bannerman , Trevor Sharp
{"title":"帕罗西汀停药后焦虑相关脑区c-Fos免疫反应性增加。","authors":"Helen M. Collins , L. Sophie Gullino , Cara Fuller , Raquel Pinacho , David M. Bannerman , Trevor Sharp","doi":"10.1016/j.neuropharm.2025.110541","DOIUrl":null,"url":null,"abstract":"<div><div>Selective serotonin reuptake inhibitor (SSRI) therapy cessation often induces a disabling discontinuation syndrome, including increased anxiety. We recently reported that SSRI discontinuation induced behavioural changes in mice, which we hypothesise arose from activated anxiety circuitry. Here, we investigated the effect of discontinuation from the SSRI paroxetine on the expression of the activity-dependent gene <em>c-fos</em> in selected anxiety-related midbrain and forebrain regions. Male mice were injected daily with paroxetine (10 mg/kg) or saline for 12 days, then treatment was either continued or discontinued for two or five days. Mice were then tested on the elevated plus maze (EPM) and tissue collected 90 min later. Brain sections including the dorsal (DRN) and median raphe nucleus, periaqueductal grey, hippocampus, prefrontal cortex, and amygdala were processed for c-Fos immunoreactivity. Two days after paroxetine discontinuation, when mice showed elevated anxiety-like behaviour on the EPM, increased c-Fos immunoreactivity was evident in the DRN and ventral hippocampus, but not in any other region examined, compared to saline-treated controls. Increased c-Fos in the DRN was evident in TPH2-immunopositive neurons as well as neurons doubled-labelled for TPH2 and VGLUT3, suggesting activation of 5-HT-glutamate co-releasing neurons. Five days after paroxetine discontinuation, increased c-Fos immunoreactivity was evident in the DRN, but mice no longer exhibited increased anxiety. These findings suggest that, under the current conditions, paroxetine discontinuation is associated with a short-lasting activation of anxiety-promoting circuitry limited to DRN 5-HT neurons and the hippocampus. This circuitry may contribute to symptoms such as anxiety that are a feature of SSRI discontinuation syndrome.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"278 ","pages":"Article 110541"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased c-Fos immunoreactivity in anxiety-related brain regions following paroxetine discontinuation\",\"authors\":\"Helen M. Collins , L. Sophie Gullino , Cara Fuller , Raquel Pinacho , David M. Bannerman , Trevor Sharp\",\"doi\":\"10.1016/j.neuropharm.2025.110541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Selective serotonin reuptake inhibitor (SSRI) therapy cessation often induces a disabling discontinuation syndrome, including increased anxiety. We recently reported that SSRI discontinuation induced behavioural changes in mice, which we hypothesise arose from activated anxiety circuitry. Here, we investigated the effect of discontinuation from the SSRI paroxetine on the expression of the activity-dependent gene <em>c-fos</em> in selected anxiety-related midbrain and forebrain regions. Male mice were injected daily with paroxetine (10 mg/kg) or saline for 12 days, then treatment was either continued or discontinued for two or five days. Mice were then tested on the elevated plus maze (EPM) and tissue collected 90 min later. Brain sections including the dorsal (DRN) and median raphe nucleus, periaqueductal grey, hippocampus, prefrontal cortex, and amygdala were processed for c-Fos immunoreactivity. Two days after paroxetine discontinuation, when mice showed elevated anxiety-like behaviour on the EPM, increased c-Fos immunoreactivity was evident in the DRN and ventral hippocampus, but not in any other region examined, compared to saline-treated controls. Increased c-Fos in the DRN was evident in TPH2-immunopositive neurons as well as neurons doubled-labelled for TPH2 and VGLUT3, suggesting activation of 5-HT-glutamate co-releasing neurons. Five days after paroxetine discontinuation, increased c-Fos immunoreactivity was evident in the DRN, but mice no longer exhibited increased anxiety. These findings suggest that, under the current conditions, paroxetine discontinuation is associated with a short-lasting activation of anxiety-promoting circuitry limited to DRN 5-HT neurons and the hippocampus. This circuitry may contribute to symptoms such as anxiety that are a feature of SSRI discontinuation syndrome.</div></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"278 \",\"pages\":\"Article 110541\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0028390825002473\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390825002473","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Increased c-Fos immunoreactivity in anxiety-related brain regions following paroxetine discontinuation
Selective serotonin reuptake inhibitor (SSRI) therapy cessation often induces a disabling discontinuation syndrome, including increased anxiety. We recently reported that SSRI discontinuation induced behavioural changes in mice, which we hypothesise arose from activated anxiety circuitry. Here, we investigated the effect of discontinuation from the SSRI paroxetine on the expression of the activity-dependent gene c-fos in selected anxiety-related midbrain and forebrain regions. Male mice were injected daily with paroxetine (10 mg/kg) or saline for 12 days, then treatment was either continued or discontinued for two or five days. Mice were then tested on the elevated plus maze (EPM) and tissue collected 90 min later. Brain sections including the dorsal (DRN) and median raphe nucleus, periaqueductal grey, hippocampus, prefrontal cortex, and amygdala were processed for c-Fos immunoreactivity. Two days after paroxetine discontinuation, when mice showed elevated anxiety-like behaviour on the EPM, increased c-Fos immunoreactivity was evident in the DRN and ventral hippocampus, but not in any other region examined, compared to saline-treated controls. Increased c-Fos in the DRN was evident in TPH2-immunopositive neurons as well as neurons doubled-labelled for TPH2 and VGLUT3, suggesting activation of 5-HT-glutamate co-releasing neurons. Five days after paroxetine discontinuation, increased c-Fos immunoreactivity was evident in the DRN, but mice no longer exhibited increased anxiety. These findings suggest that, under the current conditions, paroxetine discontinuation is associated with a short-lasting activation of anxiety-promoting circuitry limited to DRN 5-HT neurons and the hippocampus. This circuitry may contribute to symptoms such as anxiety that are a feature of SSRI discontinuation syndrome.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).