{"title":"基于多视图异构图对比学习的药物-靶标相互作用预测。","authors":"Chao Li , Lichao Zhang , Guoyi Sun , Lingtao Su","doi":"10.1016/j.jbi.2025.104852","DOIUrl":null,"url":null,"abstract":"<div><div>Drug–Target Interaction (DTI) prediction plays a pivotal role in accelerating drug discovery and development by identifying novel interactions between drugs and targets. Most previous studies on Drug–Protein Pair (DPP) networks have primarily focused on learning their topological structures. However, two key challenges remain: the integration of topological and semantic information is often insufficient, and the representation diversity may be diminished during graph convolution operations, affecting the expressiveness of learned features. To address the above challenges, we propose a novel paradigm named Multi-view Based Heterogeneous Graph Contrastive Learning for Drug–Target Interaction Prediction (HGCML-DTI). Specifically, we initially establish a drug–protein heterogeneous graph, followed by employing a weighted Graph Convolutional Network (GCN) to derive vector representations for both drug and protein nodes. Subsequently, we individually construct the topology and semantic graphs for DPP and integrate them to form a unified public graph. A multi-channel graph neural network is employed to learn DPP representations. To preserve representation diversity and enhance discriminative ability, a multi-view contrastive learning strategy is introduced. Then, a Multilayer Perceptron (MLP) neural network is used to recognize DTI. To prove the effectiveness of this work, extensive experiments are conducted on six real-world datasets, and comparisons are made with seven competitive baselines. The results demonstrate that the proposed HGCML-DTI significantly outperforms state-of-the-art methods. This work highlights the importance of combining multi-view learning and contrastive strategies to advance the field of DTI prediction. Source codes are available at <span><span>https://github.com/7A13/HGCML-DTI</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"168 ","pages":"Article 104852"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-view based heterogeneous graph contrastive learning for drug–target interaction prediction\",\"authors\":\"Chao Li , Lichao Zhang , Guoyi Sun , Lingtao Su\",\"doi\":\"10.1016/j.jbi.2025.104852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drug–Target Interaction (DTI) prediction plays a pivotal role in accelerating drug discovery and development by identifying novel interactions between drugs and targets. Most previous studies on Drug–Protein Pair (DPP) networks have primarily focused on learning their topological structures. However, two key challenges remain: the integration of topological and semantic information is often insufficient, and the representation diversity may be diminished during graph convolution operations, affecting the expressiveness of learned features. To address the above challenges, we propose a novel paradigm named Multi-view Based Heterogeneous Graph Contrastive Learning for Drug–Target Interaction Prediction (HGCML-DTI). Specifically, we initially establish a drug–protein heterogeneous graph, followed by employing a weighted Graph Convolutional Network (GCN) to derive vector representations for both drug and protein nodes. Subsequently, we individually construct the topology and semantic graphs for DPP and integrate them to form a unified public graph. A multi-channel graph neural network is employed to learn DPP representations. To preserve representation diversity and enhance discriminative ability, a multi-view contrastive learning strategy is introduced. Then, a Multilayer Perceptron (MLP) neural network is used to recognize DTI. To prove the effectiveness of this work, extensive experiments are conducted on six real-world datasets, and comparisons are made with seven competitive baselines. The results demonstrate that the proposed HGCML-DTI significantly outperforms state-of-the-art methods. This work highlights the importance of combining multi-view learning and contrastive strategies to advance the field of DTI prediction. Source codes are available at <span><span>https://github.com/7A13/HGCML-DTI</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"168 \",\"pages\":\"Article 104852\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046425000814\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000814","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multi-view based heterogeneous graph contrastive learning for drug–target interaction prediction
Drug–Target Interaction (DTI) prediction plays a pivotal role in accelerating drug discovery and development by identifying novel interactions between drugs and targets. Most previous studies on Drug–Protein Pair (DPP) networks have primarily focused on learning their topological structures. However, two key challenges remain: the integration of topological and semantic information is often insufficient, and the representation diversity may be diminished during graph convolution operations, affecting the expressiveness of learned features. To address the above challenges, we propose a novel paradigm named Multi-view Based Heterogeneous Graph Contrastive Learning for Drug–Target Interaction Prediction (HGCML-DTI). Specifically, we initially establish a drug–protein heterogeneous graph, followed by employing a weighted Graph Convolutional Network (GCN) to derive vector representations for both drug and protein nodes. Subsequently, we individually construct the topology and semantic graphs for DPP and integrate them to form a unified public graph. A multi-channel graph neural network is employed to learn DPP representations. To preserve representation diversity and enhance discriminative ability, a multi-view contrastive learning strategy is introduced. Then, a Multilayer Perceptron (MLP) neural network is used to recognize DTI. To prove the effectiveness of this work, extensive experiments are conducted on six real-world datasets, and comparisons are made with seven competitive baselines. The results demonstrate that the proposed HGCML-DTI significantly outperforms state-of-the-art methods. This work highlights the importance of combining multi-view learning and contrastive strategies to advance the field of DTI prediction. Source codes are available at https://github.com/7A13/HGCML-DTI.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.