Qian Wang , Xiao-Qi Zhang , Shan-Shan Liu , Xin-Yan Liu , Xiao-Jing Lv , Lei Zhang , Hong Lv
{"title":"GNL3L在肺癌中的作用:通过NF-κB通路的激活和Slug、MMP2和MMP9的上调介导增殖和进展。","authors":"Qian Wang , Xiao-Qi Zhang , Shan-Shan Liu , Xin-Yan Liu , Xiao-Jing Lv , Lei Zhang , Hong Lv","doi":"10.1016/j.yexcr.2025.114630","DOIUrl":null,"url":null,"abstract":"<div><div>The precise involvement of Guanine Nucleotide-Binding Protein-Like 3-Like Protein (GNL3L) in lung cancer progression and invasion remains unclear. In this study, we explored the impact and underlying mechanisms of GNL3L on the proliferation, migration, and invasion of lung adenocarcinoma (LUAD), and evaluated the therapeutic potential of targeting GNL3L. Inhibition of GNL3L expression led to a notable decrease in the <em>in vitro</em> proliferation, migration, and invasion of A549 and H1299 non-small cell lung cancer (NSCLC) cells. Meanwhile, GNL3L silencing could significantly reduce the tumor volume of the nude mice and improve the outcomes of tumor-bearing mice <em>in vivo</em>. Additionally, inhibition of GNL3L expression dramatically suppressed NF-κB activation and Slug, MMP2, and MMP9 expression. Overexpression of Slug or treatment of the GNL3L-deficient cells with NF-κB activator can partially restore the growth suppressed by GNL3L deficiency, and combined treatment with Slug overexpression and NF-κB activator could totally restore the suppressed cell growth caused by GNL3L deficiency. Moreover, the overexpression of MMP2 or MMP9 could partially enhance the reduced migration and invasion caused by GNL3L deficiency, and this GNL3L-deficiency-caused suppression of migration and invasion can be totally restored by the overexpression of MMP2 and MMP9 together. These results strongly indicated that GNL3L has the capability to activate the NF-κB and increase Slug, MMP2, and MMP9 expression, which in turn could stimulate the proliferation, migration, and invasion of lung cancer cells. NF-κB activation and Slug, MMP2, and MMP9 expression enhanced by GNL3L, leading to the promotion of proliferation, migration, and invasion of lung cancer cells, indicating the therapeutic implications and potential significance of these pathways in the progression and invasion of NSCLCs that overexpress GNL3L protein.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"450 2","pages":"Article 114630"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of GNL3L in lung cancer: Mediating proliferation and progression through NF-κB pathway activation and upregulation of Slug, MMP2, and MMP9\",\"authors\":\"Qian Wang , Xiao-Qi Zhang , Shan-Shan Liu , Xin-Yan Liu , Xiao-Jing Lv , Lei Zhang , Hong Lv\",\"doi\":\"10.1016/j.yexcr.2025.114630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The precise involvement of Guanine Nucleotide-Binding Protein-Like 3-Like Protein (GNL3L) in lung cancer progression and invasion remains unclear. In this study, we explored the impact and underlying mechanisms of GNL3L on the proliferation, migration, and invasion of lung adenocarcinoma (LUAD), and evaluated the therapeutic potential of targeting GNL3L. Inhibition of GNL3L expression led to a notable decrease in the <em>in vitro</em> proliferation, migration, and invasion of A549 and H1299 non-small cell lung cancer (NSCLC) cells. Meanwhile, GNL3L silencing could significantly reduce the tumor volume of the nude mice and improve the outcomes of tumor-bearing mice <em>in vivo</em>. Additionally, inhibition of GNL3L expression dramatically suppressed NF-κB activation and Slug, MMP2, and MMP9 expression. Overexpression of Slug or treatment of the GNL3L-deficient cells with NF-κB activator can partially restore the growth suppressed by GNL3L deficiency, and combined treatment with Slug overexpression and NF-κB activator could totally restore the suppressed cell growth caused by GNL3L deficiency. Moreover, the overexpression of MMP2 or MMP9 could partially enhance the reduced migration and invasion caused by GNL3L deficiency, and this GNL3L-deficiency-caused suppression of migration and invasion can be totally restored by the overexpression of MMP2 and MMP9 together. These results strongly indicated that GNL3L has the capability to activate the NF-κB and increase Slug, MMP2, and MMP9 expression, which in turn could stimulate the proliferation, migration, and invasion of lung cancer cells. NF-κB activation and Slug, MMP2, and MMP9 expression enhanced by GNL3L, leading to the promotion of proliferation, migration, and invasion of lung cancer cells, indicating the therapeutic implications and potential significance of these pathways in the progression and invasion of NSCLCs that overexpress GNL3L protein.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"450 2\",\"pages\":\"Article 114630\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482725002265\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725002265","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Role of GNL3L in lung cancer: Mediating proliferation and progression through NF-κB pathway activation and upregulation of Slug, MMP2, and MMP9
The precise involvement of Guanine Nucleotide-Binding Protein-Like 3-Like Protein (GNL3L) in lung cancer progression and invasion remains unclear. In this study, we explored the impact and underlying mechanisms of GNL3L on the proliferation, migration, and invasion of lung adenocarcinoma (LUAD), and evaluated the therapeutic potential of targeting GNL3L. Inhibition of GNL3L expression led to a notable decrease in the in vitro proliferation, migration, and invasion of A549 and H1299 non-small cell lung cancer (NSCLC) cells. Meanwhile, GNL3L silencing could significantly reduce the tumor volume of the nude mice and improve the outcomes of tumor-bearing mice in vivo. Additionally, inhibition of GNL3L expression dramatically suppressed NF-κB activation and Slug, MMP2, and MMP9 expression. Overexpression of Slug or treatment of the GNL3L-deficient cells with NF-κB activator can partially restore the growth suppressed by GNL3L deficiency, and combined treatment with Slug overexpression and NF-κB activator could totally restore the suppressed cell growth caused by GNL3L deficiency. Moreover, the overexpression of MMP2 or MMP9 could partially enhance the reduced migration and invasion caused by GNL3L deficiency, and this GNL3L-deficiency-caused suppression of migration and invasion can be totally restored by the overexpression of MMP2 and MMP9 together. These results strongly indicated that GNL3L has the capability to activate the NF-κB and increase Slug, MMP2, and MMP9 expression, which in turn could stimulate the proliferation, migration, and invasion of lung cancer cells. NF-κB activation and Slug, MMP2, and MMP9 expression enhanced by GNL3L, leading to the promotion of proliferation, migration, and invasion of lung cancer cells, indicating the therapeutic implications and potential significance of these pathways in the progression and invasion of NSCLCs that overexpress GNL3L protein.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.