Justin Bohn, James P Gilbert, Christopher Knoll, David M Kern, Patrick B Ryan
{"title":"药物流行病学研究候选比较物的大规模实证鉴定。","authors":"Justin Bohn, James P Gilbert, Christopher Knoll, David M Kern, Patrick B Ryan","doi":"10.1007/s40264-025-01569-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>The new user cohort design has emerged as a best practice for the estimation of drug effects from observational data. However, despite its advantages, this design requires the selection and evaluation of comparators for appropriateness, a process that can be challenging. The objective of this work was to introduce an empirical approach to rank candidate comparators in terms of their similarity to a target drug in high-dimensional covariate space.</p><p><strong>Methods: </strong>We generated new user cohorts for each RxNorm ingredient and Anatomic Therapeutic Chemical level 4 class in five administrative claims databases then extracted aggregated pre-treatment covariate data for each cohort across five clinically oriented domains. We formed all pairs of cohorts with ≥ 1000 patients and computed a scalar similarity score, defined as the average of cosine similarities computed within each domain, for each pair. We then generated ranked lists of candidate comparators for each cohort.</p><p><strong>Results: </strong>Across up to 1350 cohorts forming 922,761 comparisons, drugs that were more similar in the Anatomic Therapeutic Chemical hierarchy had higher cohort similarity scores. The most similar candidate comparators for each of six example drugs corresponded to alternative treatments used in the target drug's indication(s), and choosing the top-ranked comparator for randomly selected drugs tended to produce balance on most covariates. This approach also ranked highly those comparators chosen in high-quality published new user cohort design studies.</p><p><strong>Conclusion: </strong>Empirical comparator recommendations may serve as a useful aid to investigators and could ultimately enable the automated generation of new user cohort design-derived evidence, a process that has previously been limited to self-controlled designs.</p>","PeriodicalId":11382,"journal":{"name":"Drug Safety","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale Empirical Identification of Candidate Comparators for Pharmacoepidemiological Studies.\",\"authors\":\"Justin Bohn, James P Gilbert, Christopher Knoll, David M Kern, Patrick B Ryan\",\"doi\":\"10.1007/s40264-025-01569-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>The new user cohort design has emerged as a best practice for the estimation of drug effects from observational data. However, despite its advantages, this design requires the selection and evaluation of comparators for appropriateness, a process that can be challenging. The objective of this work was to introduce an empirical approach to rank candidate comparators in terms of their similarity to a target drug in high-dimensional covariate space.</p><p><strong>Methods: </strong>We generated new user cohorts for each RxNorm ingredient and Anatomic Therapeutic Chemical level 4 class in five administrative claims databases then extracted aggregated pre-treatment covariate data for each cohort across five clinically oriented domains. We formed all pairs of cohorts with ≥ 1000 patients and computed a scalar similarity score, defined as the average of cosine similarities computed within each domain, for each pair. We then generated ranked lists of candidate comparators for each cohort.</p><p><strong>Results: </strong>Across up to 1350 cohorts forming 922,761 comparisons, drugs that were more similar in the Anatomic Therapeutic Chemical hierarchy had higher cohort similarity scores. The most similar candidate comparators for each of six example drugs corresponded to alternative treatments used in the target drug's indication(s), and choosing the top-ranked comparator for randomly selected drugs tended to produce balance on most covariates. This approach also ranked highly those comparators chosen in high-quality published new user cohort design studies.</p><p><strong>Conclusion: </strong>Empirical comparator recommendations may serve as a useful aid to investigators and could ultimately enable the automated generation of new user cohort design-derived evidence, a process that has previously been limited to self-controlled designs.</p>\",\"PeriodicalId\":11382,\"journal\":{\"name\":\"Drug Safety\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Safety\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40264-025-01569-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40264-025-01569-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Large-scale Empirical Identification of Candidate Comparators for Pharmacoepidemiological Studies.
Background and objective: The new user cohort design has emerged as a best practice for the estimation of drug effects from observational data. However, despite its advantages, this design requires the selection and evaluation of comparators for appropriateness, a process that can be challenging. The objective of this work was to introduce an empirical approach to rank candidate comparators in terms of their similarity to a target drug in high-dimensional covariate space.
Methods: We generated new user cohorts for each RxNorm ingredient and Anatomic Therapeutic Chemical level 4 class in five administrative claims databases then extracted aggregated pre-treatment covariate data for each cohort across five clinically oriented domains. We formed all pairs of cohorts with ≥ 1000 patients and computed a scalar similarity score, defined as the average of cosine similarities computed within each domain, for each pair. We then generated ranked lists of candidate comparators for each cohort.
Results: Across up to 1350 cohorts forming 922,761 comparisons, drugs that were more similar in the Anatomic Therapeutic Chemical hierarchy had higher cohort similarity scores. The most similar candidate comparators for each of six example drugs corresponded to alternative treatments used in the target drug's indication(s), and choosing the top-ranked comparator for randomly selected drugs tended to produce balance on most covariates. This approach also ranked highly those comparators chosen in high-quality published new user cohort design studies.
Conclusion: Empirical comparator recommendations may serve as a useful aid to investigators and could ultimately enable the automated generation of new user cohort design-derived evidence, a process that has previously been limited to self-controlled designs.
期刊介绍:
Drug Safety is the official journal of the International Society of Pharmacovigilance. The journal includes:
Overviews of contentious or emerging issues.
Comprehensive narrative reviews that provide an authoritative source of information on epidemiology, clinical features, prevention and management of adverse effects of individual drugs and drug classes.
In-depth benefit-risk assessment of adverse effect and efficacy data for a drug in a defined therapeutic area.
Systematic reviews (with or without meta-analyses) that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by the PRISMA statement.
Original research articles reporting the results of well-designed studies in disciplines such as pharmacoepidemiology, pharmacovigilance, pharmacology and toxicology, and pharmacogenomics.
Editorials and commentaries on topical issues.
Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Drug Safety Drugs may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.