Andrea Colacino, Andrea Soricelli, Michele Ceccarelli, Ornella Affinito, Monica Franzese
{"title":"基于深度神经网络甲基化检测的甲状腺乳头状癌亚型检测。","authors":"Andrea Colacino, Andrea Soricelli, Michele Ceccarelli, Ornella Affinito, Monica Franzese","doi":"10.1016/j.csbj.2025.04.034","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>In recent years, DNA methylation-tumor classification based on artificial intelligence algorithms has led to a notable improvement in diagnostic accuracy compared to traditional machine learning methods. In cancer, the methylation pattern likely reflects both the cell of origin and somatically acquired DNA methylation changes, making this epigenetic modification an ideal tool for tumor classification. We propose an in-depth method based on the Convolutional Neural Network for the DNA methylation-based classification of papillary thyroid carcinoma (PTC) and its follicular (fvPTC) and classical (cvPTC) subtypes.</p><p><strong>Methods: </strong>To address this issue, we first performed a pan-cancer analysis to train a convolutional 1-D Neural Network (CNN) using supervised learning. Then, we evaluated the robustness of the net on an independent PTC dataset and assessed its ability to classify normal (N=56) versus tumor (N=461) samples and fvPTC (N=102) versus cvPTC (N=359). We then compared its performance with 4 machine learning models (logistic regression with elastic net penalty, quadratic discriminant analysis, support vector classifier with RBF kernel, and random forest).</p><p><strong>Results: </strong>By using RELU activation function and leaving out liquid tumors, our results show a remarkable performance of the neural network in classifying cancer and normal samples when applied to pan-cancer data (Validation AUC = 0.9903 and Validation Loss = 0.112). When applied to the thyroid independent dataset, the proposed Neural Net architecture successfully discriminates tumor versus normal samples (AUC = 0.91 +/- 0.05) and follicular versus classical PTC subtypes (AUC = 0.80 +/- 0.05), outperforming traditional machine learning algorithms.</p><p><strong>Conclusions: </strong>In conclusion, the study highlights the effectiveness of CNNs in the methylation based classification of thyroid tumors and their subtypes, demonstrating its ability to capture subtle epigenetic differences with minimal preprocessing.This versatility makes the model adaptable for classifying other tumor types. Also, the findings emphasize the potential relevance of AI algorithms in addressing complex diagnostic challenges and supporting clinical decisions.This research lays the foundation for developing robust and generalizable models that can advance precision oncology in cancer diagnostics.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"1809-1817"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12136774/pdf/","citationCount":"0","resultStr":"{\"title\":\"Subtypes detection of papillary thyroid cancer from methylation assay via Deep Neural Network.\",\"authors\":\"Andrea Colacino, Andrea Soricelli, Michele Ceccarelli, Ornella Affinito, Monica Franzese\",\"doi\":\"10.1016/j.csbj.2025.04.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>In recent years, DNA methylation-tumor classification based on artificial intelligence algorithms has led to a notable improvement in diagnostic accuracy compared to traditional machine learning methods. In cancer, the methylation pattern likely reflects both the cell of origin and somatically acquired DNA methylation changes, making this epigenetic modification an ideal tool for tumor classification. We propose an in-depth method based on the Convolutional Neural Network for the DNA methylation-based classification of papillary thyroid carcinoma (PTC) and its follicular (fvPTC) and classical (cvPTC) subtypes.</p><p><strong>Methods: </strong>To address this issue, we first performed a pan-cancer analysis to train a convolutional 1-D Neural Network (CNN) using supervised learning. Then, we evaluated the robustness of the net on an independent PTC dataset and assessed its ability to classify normal (N=56) versus tumor (N=461) samples and fvPTC (N=102) versus cvPTC (N=359). We then compared its performance with 4 machine learning models (logistic regression with elastic net penalty, quadratic discriminant analysis, support vector classifier with RBF kernel, and random forest).</p><p><strong>Results: </strong>By using RELU activation function and leaving out liquid tumors, our results show a remarkable performance of the neural network in classifying cancer and normal samples when applied to pan-cancer data (Validation AUC = 0.9903 and Validation Loss = 0.112). When applied to the thyroid independent dataset, the proposed Neural Net architecture successfully discriminates tumor versus normal samples (AUC = 0.91 +/- 0.05) and follicular versus classical PTC subtypes (AUC = 0.80 +/- 0.05), outperforming traditional machine learning algorithms.</p><p><strong>Conclusions: </strong>In conclusion, the study highlights the effectiveness of CNNs in the methylation based classification of thyroid tumors and their subtypes, demonstrating its ability to capture subtle epigenetic differences with minimal preprocessing.This versatility makes the model adaptable for classifying other tumor types. Also, the findings emphasize the potential relevance of AI algorithms in addressing complex diagnostic challenges and supporting clinical decisions.This research lays the foundation for developing robust and generalizable models that can advance precision oncology in cancer diagnostics.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"1809-1817\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12136774/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.04.034\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.04.034","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Subtypes detection of papillary thyroid cancer from methylation assay via Deep Neural Network.
Background and objective: In recent years, DNA methylation-tumor classification based on artificial intelligence algorithms has led to a notable improvement in diagnostic accuracy compared to traditional machine learning methods. In cancer, the methylation pattern likely reflects both the cell of origin and somatically acquired DNA methylation changes, making this epigenetic modification an ideal tool for tumor classification. We propose an in-depth method based on the Convolutional Neural Network for the DNA methylation-based classification of papillary thyroid carcinoma (PTC) and its follicular (fvPTC) and classical (cvPTC) subtypes.
Methods: To address this issue, we first performed a pan-cancer analysis to train a convolutional 1-D Neural Network (CNN) using supervised learning. Then, we evaluated the robustness of the net on an independent PTC dataset and assessed its ability to classify normal (N=56) versus tumor (N=461) samples and fvPTC (N=102) versus cvPTC (N=359). We then compared its performance with 4 machine learning models (logistic regression with elastic net penalty, quadratic discriminant analysis, support vector classifier with RBF kernel, and random forest).
Results: By using RELU activation function and leaving out liquid tumors, our results show a remarkable performance of the neural network in classifying cancer and normal samples when applied to pan-cancer data (Validation AUC = 0.9903 and Validation Loss = 0.112). When applied to the thyroid independent dataset, the proposed Neural Net architecture successfully discriminates tumor versus normal samples (AUC = 0.91 +/- 0.05) and follicular versus classical PTC subtypes (AUC = 0.80 +/- 0.05), outperforming traditional machine learning algorithms.
Conclusions: In conclusion, the study highlights the effectiveness of CNNs in the methylation based classification of thyroid tumors and their subtypes, demonstrating its ability to capture subtle epigenetic differences with minimal preprocessing.This versatility makes the model adaptable for classifying other tumor types. Also, the findings emphasize the potential relevance of AI algorithms in addressing complex diagnostic challenges and supporting clinical decisions.This research lays the foundation for developing robust and generalizable models that can advance precision oncology in cancer diagnostics.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology