elf1介导的METTL3/YTHDF2的转激活通过m6a依赖性的E2F3 mRNA失稳促进椎间盘退变中髓核细胞的衰老。

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Xiao-Wei Liu, Hao-Wei Xu, Shu-Bao Zhang, Yu-Yang Yi, Sheng-Jie Chang, Shan-Jin Wang
{"title":"elf1介导的METTL3/YTHDF2的转激活通过m6a依赖性的E2F3 mRNA失稳促进椎间盘退变中髓核细胞的衰老。","authors":"Xiao-Wei Liu, Hao-Wei Xu, Shu-Bao Zhang, Yu-Yang Yi, Sheng-Jie Chang, Shan-Jin Wang","doi":"10.1038/s41420-025-02515-8","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc degeneration (IVDD) is a common pathology involving various degenerative diseases of the spine, with nucleus pulposus cell (NPC) senescence playing an important role in its pathogenesis. Transcriptional and epigenetic processes have been increasingly implicated in aging and longevity. E74-like factor 1 (ELF1) is a member of the erythroblast transformation specific family of proteins, which induce gene transcription by binding to gene promoters or enhancer sequences. However, the role of ELF1 in age-related diseases is unclear, with no reports of its involvement in NPC senescence or IVDD. ELF1 expression levels were assessed in human NP samples from IVDD patients, IVDD animal models, and naturally aged NP samples. Adeno-associated virus 5 (AAV5) vector-mediated Elf1 overexpressing mice and Elf1 knockout (KO) mice were used to investigate its role in NPC senescence and IVDD in vivo. The m6A methylase METTL3 and reading protein YTHDF2 were identified as downstream effectors of ELF1 using proteomic sequencing, RNA sequencing, ChIP-seq, promoter prediction, and binding analyses. MepRIP-qPCR, RNA pulldown, and double luciferase point mutation experiments revealed that METTL3 and YTHDF2 can recognize the m6A site on E2F3 mRNA, a key cell cycle gene. Finally, virtual screening techniques and various experiments were used to identify small molecule targets for ELF1 inhibition. ELF1 was found to drive m6A modification changes during NPC aging. The small molecule mycophenolate mofetil (MMF) could successfully target and inhibit ELF1 expression. In senescent NPCs, ELF1 can bind to the METTL3 and YTHDF2 gene promoter regions. Overexpressing METTL3 increased the E2F3 mRNA m6A modification abundance, while YTHDF2 was recruited to recognize this m6A site. This can accelerate the E2F3 mRNA degradation rate and ultimately lead to the onset of G1/S cell cycle arrest in NPC. For the first time, the transcription factor ELF1 has been identified as a novel regulator of NPC senescence and IVDD, which involves the ELF1-METTL3/YTHDF2-m6A-E2F3 axis. MMF, a small molecule designed to inhibit ELF1 and delay NPC senescence, was screened for the first time. This can potentially lead to new epigenetic therapeutic strategies for drug discovery and development for the clinical treatment of IVDD.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"267"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137937/pdf/","citationCount":"0","resultStr":"{\"title\":\"ELF1-mediated transactivation of METTL3/YTHDF2 promotes nucleus pulposus cell senescence via m6A-dependent destabilization of E2F3 mRNA in intervertebral disc degeneration.\",\"authors\":\"Xiao-Wei Liu, Hao-Wei Xu, Shu-Bao Zhang, Yu-Yang Yi, Sheng-Jie Chang, Shan-Jin Wang\",\"doi\":\"10.1038/s41420-025-02515-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intervertebral disc degeneration (IVDD) is a common pathology involving various degenerative diseases of the spine, with nucleus pulposus cell (NPC) senescence playing an important role in its pathogenesis. Transcriptional and epigenetic processes have been increasingly implicated in aging and longevity. E74-like factor 1 (ELF1) is a member of the erythroblast transformation specific family of proteins, which induce gene transcription by binding to gene promoters or enhancer sequences. However, the role of ELF1 in age-related diseases is unclear, with no reports of its involvement in NPC senescence or IVDD. ELF1 expression levels were assessed in human NP samples from IVDD patients, IVDD animal models, and naturally aged NP samples. Adeno-associated virus 5 (AAV5) vector-mediated Elf1 overexpressing mice and Elf1 knockout (KO) mice were used to investigate its role in NPC senescence and IVDD in vivo. The m6A methylase METTL3 and reading protein YTHDF2 were identified as downstream effectors of ELF1 using proteomic sequencing, RNA sequencing, ChIP-seq, promoter prediction, and binding analyses. MepRIP-qPCR, RNA pulldown, and double luciferase point mutation experiments revealed that METTL3 and YTHDF2 can recognize the m6A site on E2F3 mRNA, a key cell cycle gene. Finally, virtual screening techniques and various experiments were used to identify small molecule targets for ELF1 inhibition. ELF1 was found to drive m6A modification changes during NPC aging. The small molecule mycophenolate mofetil (MMF) could successfully target and inhibit ELF1 expression. In senescent NPCs, ELF1 can bind to the METTL3 and YTHDF2 gene promoter regions. Overexpressing METTL3 increased the E2F3 mRNA m6A modification abundance, while YTHDF2 was recruited to recognize this m6A site. This can accelerate the E2F3 mRNA degradation rate and ultimately lead to the onset of G1/S cell cycle arrest in NPC. For the first time, the transcription factor ELF1 has been identified as a novel regulator of NPC senescence and IVDD, which involves the ELF1-METTL3/YTHDF2-m6A-E2F3 axis. MMF, a small molecule designed to inhibit ELF1 and delay NPC senescence, was screened for the first time. This can potentially lead to new epigenetic therapeutic strategies for drug discovery and development for the clinical treatment of IVDD.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"267\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137937/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02515-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02515-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

椎间盘退变(IVDD)是脊柱多种退行性疾病的常见病理,髓核细胞(NPC)衰老在其发病机制中起重要作用。转录和表观遗传过程越来越多地涉及到衰老和长寿。e74样因子1 (ELF1)是红母细胞转化特异性蛋白家族的成员,通过结合基因启动子或增强子序列诱导基因转录。然而,ELF1在年龄相关疾病中的作用尚不清楚,没有关于其参与鼻咽癌衰老或IVDD的报道。在IVDD患者、IVDD动物模型和自然衰老NP样本中评估ELF1的表达水平。以腺相关病毒5 (AAV5)载体介导的Elf1过表达小鼠和Elf1敲除(KO)小鼠为实验对象,研究其在鼻咽癌衰老和IVDD中的作用。通过蛋白质组学测序、RNA测序、ChIP-seq、启动子预测和结合分析,m6A甲基化酶METTL3和读取蛋白YTHDF2被鉴定为ELF1的下游效应蛋白。meip - qpcr、RNA下拉和双荧光素酶点突变实验表明,METTL3和YTHDF2可以识别细胞周期关键基因E2F3 mRNA上的m6A位点。最后,利用虚拟筛选技术和各种实验来确定ELF1抑制的小分子靶点。发现ELF1在NPC老化过程中驱动m6A修饰变化。小分子霉酚酸酯(mycophenolate mofetil, MMF)能够成功靶向并抑制ELF1的表达。在衰老的npc中,ELF1可以结合METTL3和YTHDF2基因启动子区域。过表达METTL3增加了E2F3 mRNA m6A修饰的丰度,而YTHDF2被招募来识别这个m6A位点。这可以加速E2F3 mRNA的降解速度,最终导致鼻咽癌G1/S细胞周期阻滞的发生。转录因子ELF1首次被确定为鼻咽癌衰老和IVDD的新调控因子,涉及ELF1- mettl3 /YTHDF2-m6A-E2F3轴。MMF是一种旨在抑制ELF1和延缓鼻咽癌衰老的小分子,首次被筛选。这可能会导致新的表观遗传治疗策略的药物发现和开发的临床治疗IVDD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ELF1-mediated transactivation of METTL3/YTHDF2 promotes nucleus pulposus cell senescence via m6A-dependent destabilization of E2F3 mRNA in intervertebral disc degeneration.

Intervertebral disc degeneration (IVDD) is a common pathology involving various degenerative diseases of the spine, with nucleus pulposus cell (NPC) senescence playing an important role in its pathogenesis. Transcriptional and epigenetic processes have been increasingly implicated in aging and longevity. E74-like factor 1 (ELF1) is a member of the erythroblast transformation specific family of proteins, which induce gene transcription by binding to gene promoters or enhancer sequences. However, the role of ELF1 in age-related diseases is unclear, with no reports of its involvement in NPC senescence or IVDD. ELF1 expression levels were assessed in human NP samples from IVDD patients, IVDD animal models, and naturally aged NP samples. Adeno-associated virus 5 (AAV5) vector-mediated Elf1 overexpressing mice and Elf1 knockout (KO) mice were used to investigate its role in NPC senescence and IVDD in vivo. The m6A methylase METTL3 and reading protein YTHDF2 were identified as downstream effectors of ELF1 using proteomic sequencing, RNA sequencing, ChIP-seq, promoter prediction, and binding analyses. MepRIP-qPCR, RNA pulldown, and double luciferase point mutation experiments revealed that METTL3 and YTHDF2 can recognize the m6A site on E2F3 mRNA, a key cell cycle gene. Finally, virtual screening techniques and various experiments were used to identify small molecule targets for ELF1 inhibition. ELF1 was found to drive m6A modification changes during NPC aging. The small molecule mycophenolate mofetil (MMF) could successfully target and inhibit ELF1 expression. In senescent NPCs, ELF1 can bind to the METTL3 and YTHDF2 gene promoter regions. Overexpressing METTL3 increased the E2F3 mRNA m6A modification abundance, while YTHDF2 was recruited to recognize this m6A site. This can accelerate the E2F3 mRNA degradation rate and ultimately lead to the onset of G1/S cell cycle arrest in NPC. For the first time, the transcription factor ELF1 has been identified as a novel regulator of NPC senescence and IVDD, which involves the ELF1-METTL3/YTHDF2-m6A-E2F3 axis. MMF, a small molecule designed to inhibit ELF1 and delay NPC senescence, was screened for the first time. This can potentially lead to new epigenetic therapeutic strategies for drug discovery and development for the clinical treatment of IVDD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信