使用定量方法优化肿瘤药物新组合和后续适应症的剂量。

IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Wei Gao, Jiang Liu, Cynthia J Musante, Hao Zhu, Matthew Thompson, Mirat Shah, Yanguang Cao, Vijay Ivaturi, Mark R Conaway, Dean Bottino, Donghua Yin, Dorothee Semiond, Aram Oganesian, Mark J Ratain, Chunze Li, Li Zhu, Ying C Ou, Xiling Jiang, Jonathan Vallejo, Rajanikanth Madabushi, Qi Liu, Marc Theoret, Atiqur Rahman, Brian Booth, Olanrewaju Okusanya, Bernadette E Johnson-Williams, Stacy S Shord
{"title":"使用定量方法优化肿瘤药物新组合和后续适应症的剂量。","authors":"Wei Gao, Jiang Liu, Cynthia J Musante, Hao Zhu, Matthew Thompson, Mirat Shah, Yanguang Cao, Vijay Ivaturi, Mark R Conaway, Dean Bottino, Donghua Yin, Dorothee Semiond, Aram Oganesian, Mark J Ratain, Chunze Li, Li Zhu, Ying C Ou, Xiling Jiang, Jonathan Vallejo, Rajanikanth Madabushi, Qi Liu, Marc Theoret, Atiqur Rahman, Brian Booth, Olanrewaju Okusanya, Bernadette E Johnson-Williams, Stacy S Shord","doi":"10.1002/cpt.3725","DOIUrl":null,"url":null,"abstract":"<p><p>Ongoing efforts to optimize the dosages of oncology drugs have largely focused on the initial indication, with emphasis placed on maximizing the utility of all available evidence to improve dose finding, dose selection, and trial design; however, optimizing dosages for new combinations or subsequent indications is more complex and warrants further discussion. For example, the dose-response (DR) or exposure-response (ER) relationships can change when multiple drugs are used (combination therapies) and can differ between tumor types, patient populations, and treatment settings (subsequent indications). Quantitative approaches can help address the challenges of optimizing dosages for new combinations or subsequent indications. To further this dialogue, the US Food and Drug Administration's Office of Clinical Pharmacology and the International Society of Pharmacometrics co-sponsored a workshop to discuss the development of investigational and approved drugs in new combinations or for subsequent indications using model-informed approaches to investigate, support, and select optimized dosages for oncology drugs.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Quantitative Approaches to Optimize Dosages for New Combinations and Subsequent Indications for Oncology Drugs.\",\"authors\":\"Wei Gao, Jiang Liu, Cynthia J Musante, Hao Zhu, Matthew Thompson, Mirat Shah, Yanguang Cao, Vijay Ivaturi, Mark R Conaway, Dean Bottino, Donghua Yin, Dorothee Semiond, Aram Oganesian, Mark J Ratain, Chunze Li, Li Zhu, Ying C Ou, Xiling Jiang, Jonathan Vallejo, Rajanikanth Madabushi, Qi Liu, Marc Theoret, Atiqur Rahman, Brian Booth, Olanrewaju Okusanya, Bernadette E Johnson-Williams, Stacy S Shord\",\"doi\":\"10.1002/cpt.3725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ongoing efforts to optimize the dosages of oncology drugs have largely focused on the initial indication, with emphasis placed on maximizing the utility of all available evidence to improve dose finding, dose selection, and trial design; however, optimizing dosages for new combinations or subsequent indications is more complex and warrants further discussion. For example, the dose-response (DR) or exposure-response (ER) relationships can change when multiple drugs are used (combination therapies) and can differ between tumor types, patient populations, and treatment settings (subsequent indications). Quantitative approaches can help address the challenges of optimizing dosages for new combinations or subsequent indications. To further this dialogue, the US Food and Drug Administration's Office of Clinical Pharmacology and the International Society of Pharmacometrics co-sponsored a workshop to discuss the development of investigational and approved drugs in new combinations or for subsequent indications using model-informed approaches to investigate, support, and select optimized dosages for oncology drugs.</p>\",\"PeriodicalId\":153,\"journal\":{\"name\":\"Clinical Pharmacology & Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pharmacology & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cpt.3725\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cpt.3725","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

正在进行的优化肿瘤药物剂量的努力主要集中在初始适应症上,重点是最大限度地利用所有现有证据来改进剂量发现、剂量选择和试验设计;然而,优化新组合或后续适应症的剂量更为复杂,值得进一步讨论。例如,当使用多种药物(联合治疗)时,剂量-反应(DR)或暴露-反应(ER)关系可能发生变化,并且可能因肿瘤类型、患者群体和治疗环境(后续适应症)而异。定量方法可以帮助解决优化新组合或后续适应症剂量的挑战。为了进一步推动这一对话,美国食品和药物管理局临床药理学办公室和国际药物计量学学会共同主办了一个研讨会,讨论正在研究和批准的新组合药物或后续适应症药物的开发,使用模型知情方法来研究、支持和选择肿瘤药物的最佳剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Quantitative Approaches to Optimize Dosages for New Combinations and Subsequent Indications for Oncology Drugs.

Ongoing efforts to optimize the dosages of oncology drugs have largely focused on the initial indication, with emphasis placed on maximizing the utility of all available evidence to improve dose finding, dose selection, and trial design; however, optimizing dosages for new combinations or subsequent indications is more complex and warrants further discussion. For example, the dose-response (DR) or exposure-response (ER) relationships can change when multiple drugs are used (combination therapies) and can differ between tumor types, patient populations, and treatment settings (subsequent indications). Quantitative approaches can help address the challenges of optimizing dosages for new combinations or subsequent indications. To further this dialogue, the US Food and Drug Administration's Office of Clinical Pharmacology and the International Society of Pharmacometrics co-sponsored a workshop to discuss the development of investigational and approved drugs in new combinations or for subsequent indications using model-informed approaches to investigate, support, and select optimized dosages for oncology drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
7.50%
发文量
290
审稿时长
2 months
期刊介绍: Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信