Rupam Biswas , Gourab Bhattacharje , Bina Kumari Singh , Debajyoti Dutta , Amit Basak , Amit Kumar Das
{"title":"结核分枝杆菌maoc样脱水酶HtdX的晶体结构和分子动力学模拟为底物结合和膜相互作用提供了新的见解","authors":"Rupam Biswas , Gourab Bhattacharje , Bina Kumari Singh , Debajyoti Dutta , Amit Basak , Amit Kumar Das","doi":"10.1016/j.bbapap.2025.141082","DOIUrl":null,"url":null,"abstract":"<div><div>The growing challenge of drug resistance has intensified the search for new therapeutic targets against the virulent pathogen <em>Mycobacterium tuberculosis</em> (Mtb). The complex cell envelope of Mtb contains unique lipids, such as mycolic acids, which contribute to its survival under hostile conditions. While modern drugs like isoniazid inhibit mycolic acid biosynthesis through the fatty acid synthase II (FAS II) complex, alternative bypass pathways may facilitate the emergence of drug resistance. <em>HtdX</em>, a putative β-hydroxyacyl dehydratase gene conserved in the mycobacterial species, is hypothesized to play a role in these alternative fatty acid metabolism pathways. Although HtdX is expressed under nutrient-deficient conditions, its structural and functional characterization remains largely unexplored. This study presents the crystal structures of HtdX, revealing a MaoC-like dehydratase with a double hot-dog fold. Site-directed mutagenesis, enzyme kinetics, and fluorescence spectroscopy highlight the critical roles of the α2-β2 loop and the proline rich PP-loop in substrate specificity. The α2-β2 loop determines fatty acyl chain length specificity, while the PP-loop regulates the interaction between HtdX and the acyl carrier protein (AcpM). Computational predictions, complemented by molecular dynamics simulations and principal component analyses, establish that the N-terminal region of HtdX is essential for membrane binding. Overall, these findings offer insights into HtdX substrate specificity and provide theoretical understanding of its interaction with the membrane.</div></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1873 5","pages":"Article 141082"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structure and molecular dynamics simulation of Mycobacterium tuberculosis MaoC-like dehydratase HtdX provide insights into substrate binding and membrane interactions\",\"authors\":\"Rupam Biswas , Gourab Bhattacharje , Bina Kumari Singh , Debajyoti Dutta , Amit Basak , Amit Kumar Das\",\"doi\":\"10.1016/j.bbapap.2025.141082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing challenge of drug resistance has intensified the search for new therapeutic targets against the virulent pathogen <em>Mycobacterium tuberculosis</em> (Mtb). The complex cell envelope of Mtb contains unique lipids, such as mycolic acids, which contribute to its survival under hostile conditions. While modern drugs like isoniazid inhibit mycolic acid biosynthesis through the fatty acid synthase II (FAS II) complex, alternative bypass pathways may facilitate the emergence of drug resistance. <em>HtdX</em>, a putative β-hydroxyacyl dehydratase gene conserved in the mycobacterial species, is hypothesized to play a role in these alternative fatty acid metabolism pathways. Although HtdX is expressed under nutrient-deficient conditions, its structural and functional characterization remains largely unexplored. This study presents the crystal structures of HtdX, revealing a MaoC-like dehydratase with a double hot-dog fold. Site-directed mutagenesis, enzyme kinetics, and fluorescence spectroscopy highlight the critical roles of the α2-β2 loop and the proline rich PP-loop in substrate specificity. The α2-β2 loop determines fatty acyl chain length specificity, while the PP-loop regulates the interaction between HtdX and the acyl carrier protein (AcpM). Computational predictions, complemented by molecular dynamics simulations and principal component analyses, establish that the N-terminal region of HtdX is essential for membrane binding. Overall, these findings offer insights into HtdX substrate specificity and provide theoretical understanding of its interaction with the membrane.</div></div>\",\"PeriodicalId\":8760,\"journal\":{\"name\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"volume\":\"1873 5\",\"pages\":\"Article 141082\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963925000202\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963925000202","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Crystal structure and molecular dynamics simulation of Mycobacterium tuberculosis MaoC-like dehydratase HtdX provide insights into substrate binding and membrane interactions
The growing challenge of drug resistance has intensified the search for new therapeutic targets against the virulent pathogen Mycobacterium tuberculosis (Mtb). The complex cell envelope of Mtb contains unique lipids, such as mycolic acids, which contribute to its survival under hostile conditions. While modern drugs like isoniazid inhibit mycolic acid biosynthesis through the fatty acid synthase II (FAS II) complex, alternative bypass pathways may facilitate the emergence of drug resistance. HtdX, a putative β-hydroxyacyl dehydratase gene conserved in the mycobacterial species, is hypothesized to play a role in these alternative fatty acid metabolism pathways. Although HtdX is expressed under nutrient-deficient conditions, its structural and functional characterization remains largely unexplored. This study presents the crystal structures of HtdX, revealing a MaoC-like dehydratase with a double hot-dog fold. Site-directed mutagenesis, enzyme kinetics, and fluorescence spectroscopy highlight the critical roles of the α2-β2 loop and the proline rich PP-loop in substrate specificity. The α2-β2 loop determines fatty acyl chain length specificity, while the PP-loop regulates the interaction between HtdX and the acyl carrier protein (AcpM). Computational predictions, complemented by molecular dynamics simulations and principal component analyses, establish that the N-terminal region of HtdX is essential for membrane binding. Overall, these findings offer insights into HtdX substrate specificity and provide theoretical understanding of its interaction with the membrane.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.