Shurui Duan , Yuan Xu , Li Xu , Si Wu , Tan Guo , Yu Wang
{"title":"载MnOx分级β沸石催化降解大体积芳烃的研究","authors":"Shurui Duan , Yuan Xu , Li Xu , Si Wu , Tan Guo , Yu Wang","doi":"10.1016/j.apcata.2025.120401","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional β zeolite exhibits limitations stemming from its constrained pore size and relatively low external surface area, impeding the efficient diffusion of bulky reactant molecules and limiting the accessibility and loading of active sites. Herein, we developed a hierarchical MnO<sub>x</sub> loaded β zeolite (MnO<sub>x</sub>/m-β) via a rational hydrothermal and subsequent redox-precipitation strategy. The hierarchical structure endows MnO<sub>x</sub>/m-β with a higher external surface area and optimized pore architecture, facilitating both the uniform dispersion of MnO<sub>x</sub> species and rapid diffusion of bulky molecules than conventional MnO<sub>x</sub>/β. Taking adsorption and catalytic oxidation of toluene, <em>o</em>-xylene, and 1,3,5-trimethylbenzene (TMB) as probe reactions, m-β exhibits significantly enhanced adsorption capacities for <em>o</em>-xylene (45.3 mg/g) and TMB (91.4 mg/g), representing 1.7 and 3.8 times increases compared to conventional β, respectively. Furthermore, MnO<sub>x</sub>/m-β achieves complete oxidation of toluene, <em>o</em>-xylene, and TMB at ca. 260 °C, 300 °C and 250 °C, respectively, significantly lower than those required for MnO<sub>x</sub>/β. This superior catalytic performance is attributed to the synergistic effects of enhanced Mn<sup>4 +</sup> -activated lattice oxygen mobility, hierarchical mass transfer channels, and abundant accessible active sites. The designed hierarchical architecture of β holds promise for the efficient removal of bulky aromatic hydrocarbon.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"704 ","pages":"Article 120401"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical MnOx loaded β zeolite as efficient catalyst for bulky aromatic hydrocarbon catalytic degradation\",\"authors\":\"Shurui Duan , Yuan Xu , Li Xu , Si Wu , Tan Guo , Yu Wang\",\"doi\":\"10.1016/j.apcata.2025.120401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional β zeolite exhibits limitations stemming from its constrained pore size and relatively low external surface area, impeding the efficient diffusion of bulky reactant molecules and limiting the accessibility and loading of active sites. Herein, we developed a hierarchical MnO<sub>x</sub> loaded β zeolite (MnO<sub>x</sub>/m-β) via a rational hydrothermal and subsequent redox-precipitation strategy. The hierarchical structure endows MnO<sub>x</sub>/m-β with a higher external surface area and optimized pore architecture, facilitating both the uniform dispersion of MnO<sub>x</sub> species and rapid diffusion of bulky molecules than conventional MnO<sub>x</sub>/β. Taking adsorption and catalytic oxidation of toluene, <em>o</em>-xylene, and 1,3,5-trimethylbenzene (TMB) as probe reactions, m-β exhibits significantly enhanced adsorption capacities for <em>o</em>-xylene (45.3 mg/g) and TMB (91.4 mg/g), representing 1.7 and 3.8 times increases compared to conventional β, respectively. Furthermore, MnO<sub>x</sub>/m-β achieves complete oxidation of toluene, <em>o</em>-xylene, and TMB at ca. 260 °C, 300 °C and 250 °C, respectively, significantly lower than those required for MnO<sub>x</sub>/β. This superior catalytic performance is attributed to the synergistic effects of enhanced Mn<sup>4 +</sup> -activated lattice oxygen mobility, hierarchical mass transfer channels, and abundant accessible active sites. The designed hierarchical architecture of β holds promise for the efficient removal of bulky aromatic hydrocarbon.</div></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":\"704 \",\"pages\":\"Article 120401\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X25003023\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X25003023","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hierarchical MnOx loaded β zeolite as efficient catalyst for bulky aromatic hydrocarbon catalytic degradation
Conventional β zeolite exhibits limitations stemming from its constrained pore size and relatively low external surface area, impeding the efficient diffusion of bulky reactant molecules and limiting the accessibility and loading of active sites. Herein, we developed a hierarchical MnOx loaded β zeolite (MnOx/m-β) via a rational hydrothermal and subsequent redox-precipitation strategy. The hierarchical structure endows MnOx/m-β with a higher external surface area and optimized pore architecture, facilitating both the uniform dispersion of MnOx species and rapid diffusion of bulky molecules than conventional MnOx/β. Taking adsorption and catalytic oxidation of toluene, o-xylene, and 1,3,5-trimethylbenzene (TMB) as probe reactions, m-β exhibits significantly enhanced adsorption capacities for o-xylene (45.3 mg/g) and TMB (91.4 mg/g), representing 1.7 and 3.8 times increases compared to conventional β, respectively. Furthermore, MnOx/m-β achieves complete oxidation of toluene, o-xylene, and TMB at ca. 260 °C, 300 °C and 250 °C, respectively, significantly lower than those required for MnOx/β. This superior catalytic performance is attributed to the synergistic effects of enhanced Mn4 + -activated lattice oxygen mobility, hierarchical mass transfer channels, and abundant accessible active sites. The designed hierarchical architecture of β holds promise for the efficient removal of bulky aromatic hydrocarbon.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.