{"title":"低粘度幂律流体拉伸与剪切流变关系的实验研究","authors":"Yuzuki Matsumoto , Misa Kawaguchi , Yoshiyuki Tagawa","doi":"10.1016/j.jnnfm.2025.105436","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the relationship between extensional and shear viscosity of low-viscosity power-law fluids. We show the first experimental evidence of the conditions satisfying the same power exponents for extensional and shear viscosity, as indicated by the Carreau model. The extensional and shear viscosity are respectively measured by capillary breakup extensional rheometry dripping-onto-substrate (CaBER-DoS) and by a shear rheometer for various Ohnesorge number <span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span>. The viscosity ranges measured are about <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> mPa s for shear viscosity and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> mPa s for apparent extensional viscosity. Our experimental results show that, at least for the range of <span><math><mrow><mi>O</mi><mi>h</mi><mo>></mo><mn>1</mn></mrow></math></span>, the power-law expression for the liquid filament radius, apparent extensional viscosity, and shear viscosity holds, even for low-viscosity fluids under our experimental conditions.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"343 ","pages":"Article 105436"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the relationship between extensional and shear rheology of low-viscosity power-law fluids\",\"authors\":\"Yuzuki Matsumoto , Misa Kawaguchi , Yoshiyuki Tagawa\",\"doi\":\"10.1016/j.jnnfm.2025.105436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the relationship between extensional and shear viscosity of low-viscosity power-law fluids. We show the first experimental evidence of the conditions satisfying the same power exponents for extensional and shear viscosity, as indicated by the Carreau model. The extensional and shear viscosity are respectively measured by capillary breakup extensional rheometry dripping-onto-substrate (CaBER-DoS) and by a shear rheometer for various Ohnesorge number <span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span>. The viscosity ranges measured are about <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> mPa s for shear viscosity and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> mPa s for apparent extensional viscosity. Our experimental results show that, at least for the range of <span><math><mrow><mi>O</mi><mi>h</mi><mo>></mo><mn>1</mn></mrow></math></span>, the power-law expression for the liquid filament radius, apparent extensional viscosity, and shear viscosity holds, even for low-viscosity fluids under our experimental conditions.</div></div>\",\"PeriodicalId\":54782,\"journal\":{\"name\":\"Journal of Non-Newtonian Fluid Mechanics\",\"volume\":\"343 \",\"pages\":\"Article 105436\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Newtonian Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377025725000552\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025725000552","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Experimental study on the relationship between extensional and shear rheology of low-viscosity power-law fluids
This paper investigates the relationship between extensional and shear viscosity of low-viscosity power-law fluids. We show the first experimental evidence of the conditions satisfying the same power exponents for extensional and shear viscosity, as indicated by the Carreau model. The extensional and shear viscosity are respectively measured by capillary breakup extensional rheometry dripping-onto-substrate (CaBER-DoS) and by a shear rheometer for various Ohnesorge number . The viscosity ranges measured are about to mPa s for shear viscosity and to mPa s for apparent extensional viscosity. Our experimental results show that, at least for the range of , the power-law expression for the liquid filament radius, apparent extensional viscosity, and shear viscosity holds, even for low-viscosity fluids under our experimental conditions.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.