{"title":"流形非各向同性邻域的有理点计数","authors":"Rajula Srivastava","doi":"10.1016/j.aim.2025.110394","DOIUrl":null,"url":null,"abstract":"<div><div>In this manuscript, we initiate the study of the number of rational points with bounded denominators, contained in a <em>non-isotropic</em> <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><mo>…</mo><mo>×</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> neighborhood of a compact submanifold <span><math><mi>M</mi></math></span> of codimension <em>R</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>M</mi></mrow></msup></math></span>. We establish an upper bound for this counting function which holds when <span><math><mi>M</mi></math></span> satisfies a strong curvature condition, first introduced by Schindler-Yamagishi in <span><span>[22]</span></span>. Further, even in the isotropic case when <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>…</mo><mo>=</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>=</mo><mi>δ</mi></math></span>, we obtain an asymptotic formula which holds beyond the range of distance to <span><math><mi>M</mi></math></span> established in <span><span>[22]</span></span>. Our result is also a generalization of the work of J.J. Huang <span><span>[9]</span></span> for hypersurfaces.</div><div>As an application, we establish for the first time an upper bound for the Hausdorff dimension of the set of weighted simultaneously well approximable points on a manifold <span><math><mi>M</mi></math></span> satisfying the strong curvature condition, which agrees with the lower bound obtained by Allen-Wang in <span><span>[2]</span></span>. Moreover, for <span><math><mi>R</mi><mo>></mo><mn>1</mn></math></span>, we obtain a new upper bound for the number of rational points <em>on</em> <span><math><mi>M</mi></math></span>, which goes beyond the bound in an analogue of Serre's dimension growth conjecture for submanifolds of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>M</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110394"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting rational points in non-isotropic neighborhoods of manifolds\",\"authors\":\"Rajula Srivastava\",\"doi\":\"10.1016/j.aim.2025.110394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this manuscript, we initiate the study of the number of rational points with bounded denominators, contained in a <em>non-isotropic</em> <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><mo>…</mo><mo>×</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> neighborhood of a compact submanifold <span><math><mi>M</mi></math></span> of codimension <em>R</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>M</mi></mrow></msup></math></span>. We establish an upper bound for this counting function which holds when <span><math><mi>M</mi></math></span> satisfies a strong curvature condition, first introduced by Schindler-Yamagishi in <span><span>[22]</span></span>. Further, even in the isotropic case when <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>…</mo><mo>=</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>=</mo><mi>δ</mi></math></span>, we obtain an asymptotic formula which holds beyond the range of distance to <span><math><mi>M</mi></math></span> established in <span><span>[22]</span></span>. Our result is also a generalization of the work of J.J. Huang <span><span>[9]</span></span> for hypersurfaces.</div><div>As an application, we establish for the first time an upper bound for the Hausdorff dimension of the set of weighted simultaneously well approximable points on a manifold <span><math><mi>M</mi></math></span> satisfying the strong curvature condition, which agrees with the lower bound obtained by Allen-Wang in <span><span>[2]</span></span>. Moreover, for <span><math><mi>R</mi><mo>></mo><mn>1</mn></math></span>, we obtain a new upper bound for the number of rational points <em>on</em> <span><math><mi>M</mi></math></span>, which goes beyond the bound in an analogue of Serre's dimension growth conjecture for submanifolds of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>M</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"478 \",\"pages\":\"Article 110394\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002920\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002920","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了RM中余维为R的紧子流形M的非各向同性δ 1x…×δR邻域中带有有界分母的有理点的个数。我们建立了该计数函数的上界,当M满足强曲率条件时,该上界成立,该条件首先由Schindler-Yamagishi在[22]中引入。进一步,在δ1=…=δ r =δ的各向同性情况下,我们得到了一个在[22]中建立的到M的距离范围之外的渐近公式。我们的结果也推广了J.J. Huang[9]关于超曲面的工作。作为应用,我们首次建立了满足强曲率条件的流形M上加权同时良好逼近点集的Hausdorff维数的上界,与Allen-Wang在[2]中得到的下界一致。此外,对于R>;1,我们得到了M上有理点个数的一个新的上界,该上界超越了RM子流形的Serre维数增长猜想的一个类似的上界。
Counting rational points in non-isotropic neighborhoods of manifolds
In this manuscript, we initiate the study of the number of rational points with bounded denominators, contained in a non-isotropic neighborhood of a compact submanifold of codimension R in . We establish an upper bound for this counting function which holds when satisfies a strong curvature condition, first introduced by Schindler-Yamagishi in [22]. Further, even in the isotropic case when , we obtain an asymptotic formula which holds beyond the range of distance to established in [22]. Our result is also a generalization of the work of J.J. Huang [9] for hypersurfaces.
As an application, we establish for the first time an upper bound for the Hausdorff dimension of the set of weighted simultaneously well approximable points on a manifold satisfying the strong curvature condition, which agrees with the lower bound obtained by Allen-Wang in [2]. Moreover, for , we obtain a new upper bound for the number of rational points on , which goes beyond the bound in an analogue of Serre's dimension growth conjecture for submanifolds of .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.