基于端到端鲁棒特征学习的人脸识别方法

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Menglong Yang , Hanyong Wang , Fangrui Wu , Xuebin Lv
{"title":"基于端到端鲁棒特征学习的人脸识别方法","authors":"Menglong Yang ,&nbsp;Hanyong Wang ,&nbsp;Fangrui Wu ,&nbsp;Xuebin Lv","doi":"10.1016/j.jvcir.2025.104485","DOIUrl":null,"url":null,"abstract":"<div><div>As for deep learning-based face recognition, training a discriminative feature representation is challenging when dealing with noisy-labeled data. This paper introduces a feature learning method robust to such conditions. Our key contributions include an online data filtering algorithm that automatically segregates correctly labeled data from noisy-labeled training data. Additionally, we propose a mechanism called online negative centers sampling (ONCS), which can enlarge the feature space distance between samples within the same class and the centers of different classes. Thus feature learning can be contributed by all the data with ONCS, including the noise-labeled data. We test our method to training an 128-D feature representation on the extreme noisy MS-Celeb-1M dataset, without any preprocess procedures like pre-training dataset or cleaning dataset. The result demonstrates an accuracy of 99.33% on LFW test set with a single model and without the preprocessing of landmark-based alignment close to the result by the clean data.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"111 ","pages":"Article 104485"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An end-to-end robust feature learning method for face recognition\",\"authors\":\"Menglong Yang ,&nbsp;Hanyong Wang ,&nbsp;Fangrui Wu ,&nbsp;Xuebin Lv\",\"doi\":\"10.1016/j.jvcir.2025.104485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As for deep learning-based face recognition, training a discriminative feature representation is challenging when dealing with noisy-labeled data. This paper introduces a feature learning method robust to such conditions. Our key contributions include an online data filtering algorithm that automatically segregates correctly labeled data from noisy-labeled training data. Additionally, we propose a mechanism called online negative centers sampling (ONCS), which can enlarge the feature space distance between samples within the same class and the centers of different classes. Thus feature learning can be contributed by all the data with ONCS, including the noise-labeled data. We test our method to training an 128-D feature representation on the extreme noisy MS-Celeb-1M dataset, without any preprocess procedures like pre-training dataset or cleaning dataset. The result demonstrates an accuracy of 99.33% on LFW test set with a single model and without the preprocessing of landmark-based alignment close to the result by the clean data.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"111 \",\"pages\":\"Article 104485\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320325000999\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000999","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对于基于深度学习的人脸识别,在处理噪声标记数据时,训练一个判别特征表示是具有挑战性的。本文介绍了一种对这种情况具有鲁棒性的特征学习方法。我们的主要贡献包括一个在线数据过滤算法,该算法可以自动将正确标记的数据从噪声标记的训练数据中分离出来。此外,我们提出了一种在线负中心采样(ONCS)机制,该机制可以扩大同一类内样本与不同类中心之间的特征空间距离。因此,所有带有ONCS的数据都可以用于特征学习,包括带有噪声标记的数据。我们测试了我们的方法在极端噪声MS-Celeb-1M数据集上训练128-D特征表示,而不需要任何预处理程序,如预训练数据集或清洗数据集。结果表明,在单一模型的LFW测试集上,不进行与干净数据结果接近的地标对齐预处理,准确率达到99.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An end-to-end robust feature learning method for face recognition
As for deep learning-based face recognition, training a discriminative feature representation is challenging when dealing with noisy-labeled data. This paper introduces a feature learning method robust to such conditions. Our key contributions include an online data filtering algorithm that automatically segregates correctly labeled data from noisy-labeled training data. Additionally, we propose a mechanism called online negative centers sampling (ONCS), which can enlarge the feature space distance between samples within the same class and the centers of different classes. Thus feature learning can be contributed by all the data with ONCS, including the noise-labeled data. We test our method to training an 128-D feature representation on the extreme noisy MS-Celeb-1M dataset, without any preprocess procedures like pre-training dataset or cleaning dataset. The result demonstrates an accuracy of 99.33% on LFW test set with a single model and without the preprocessing of landmark-based alignment close to the result by the clean data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信