{"title":"用逆散射法积分分数阶修正Korteweg de vries -sin - gordon方程","authors":"Bazar Babajanov , Fakhriddin Abdikarimov","doi":"10.1016/j.rinam.2025.100586","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we investigate the fractional modified Korteweg de Vries-sine-Gordon equation and show the inverse scattering transform method can also be used to obtain soliton solutions of fractional modified Korteweg de Vries-sine-Gordon equation. It is illustrated the relationship between the wave velocity and the <span><math><mi>ϵ</mi></math></span> parameter for the fractional modified Korteweg de Vries-sine-Gordon equation in the case of one soliton solution, then this result was compared with fractional modified Korteweg de Vries equation, fractional sine-Gordon equation and the modified Korteweg de Vries-sine-Gordon equation.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100586"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of the fractional modified Korteweg de Vries-sine-Gordon equation by the inverse scattering method\",\"authors\":\"Bazar Babajanov , Fakhriddin Abdikarimov\",\"doi\":\"10.1016/j.rinam.2025.100586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we investigate the fractional modified Korteweg de Vries-sine-Gordon equation and show the inverse scattering transform method can also be used to obtain soliton solutions of fractional modified Korteweg de Vries-sine-Gordon equation. It is illustrated the relationship between the wave velocity and the <span><math><mi>ϵ</mi></math></span> parameter for the fractional modified Korteweg de Vries-sine-Gordon equation in the case of one soliton solution, then this result was compared with fractional modified Korteweg de Vries equation, fractional sine-Gordon equation and the modified Korteweg de Vries-sine-Gordon equation.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100586\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了分数阶修正Korteweg - de vries -sin - gordon方程,并证明了逆散射变换方法也可以用于得到分数阶修正Korteweg - de vries -sin - gordon方程的孤子解。给出了单孤子解情况下分数阶修正Korteweg de Vries-sin - gordon方程的波速与柱形参数的关系,并与分数阶修正Korteweg de Vries方程、分数阶修正sin - gordon方程和修正Korteweg de Vries-sin - gordon方程进行了比较。
Integration of the fractional modified Korteweg de Vries-sine-Gordon equation by the inverse scattering method
In this paper we investigate the fractional modified Korteweg de Vries-sine-Gordon equation and show the inverse scattering transform method can also be used to obtain soliton solutions of fractional modified Korteweg de Vries-sine-Gordon equation. It is illustrated the relationship between the wave velocity and the parameter for the fractional modified Korteweg de Vries-sine-Gordon equation in the case of one soliton solution, then this result was compared with fractional modified Korteweg de Vries equation, fractional sine-Gordon equation and the modified Korteweg de Vries-sine-Gordon equation.