{"title":"发酵乳制品对肥胖患者肠道微生物衍生代谢物的影响:综述","authors":"Tsamaroh Azzah Mukarromah, Ninik Rustanti, Endang Mahati, Suparmi, Fitriyono Ayustaningwarno","doi":"10.1111/1750-3841.70301","DOIUrl":null,"url":null,"abstract":"<p>Obesity, a multifactorial metabolic disorder, has been increasingly linked to gut microbiota dysbiosis and its downstream metabolites. Among these, short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) play pivotal roles in energy regulation, glucose and lipid metabolism, inflammation, and host-microbiota crosstalk. Fermented milk products, enriched with probiotics, prebiotics, and bioactive peptides, offer a dietary intervention capable of modulating the gut microbial community and promoting the production of beneficial metabolites. This narrative review synthesizes evidence from both animal and human studies to explore the influence of fermented milk products on SCFA and SBA production in the context of obesity. Findings suggest that fermented milk consumption enhances the abundance of beneficial bacteria (e.g., Lactobacillus, Bifidobacterium), increases SCFA and SBA levels, improves intestinal barrier function, and contributes to improved metabolic outcomes, including reduced inflammation, improved insulin sensitivity, and favorable lipid profiles. These effects are mediated through key molecular pathways involving free fatty acid receptors, bile acid receptors, and inflammatory mediators. Further long-term, mechanistic, and population-diverse studies are essential to optimize formulations and substantiate clinical applications of fermented milk in obesity management.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.70301","citationCount":"0","resultStr":"{\"title\":\"The Impact of Fermented Milk Products on Gut Microbiota-Derived Metabolites in Obesity: A Narrative Review\",\"authors\":\"Tsamaroh Azzah Mukarromah, Ninik Rustanti, Endang Mahati, Suparmi, Fitriyono Ayustaningwarno\",\"doi\":\"10.1111/1750-3841.70301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Obesity, a multifactorial metabolic disorder, has been increasingly linked to gut microbiota dysbiosis and its downstream metabolites. Among these, short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) play pivotal roles in energy regulation, glucose and lipid metabolism, inflammation, and host-microbiota crosstalk. Fermented milk products, enriched with probiotics, prebiotics, and bioactive peptides, offer a dietary intervention capable of modulating the gut microbial community and promoting the production of beneficial metabolites. This narrative review synthesizes evidence from both animal and human studies to explore the influence of fermented milk products on SCFA and SBA production in the context of obesity. Findings suggest that fermented milk consumption enhances the abundance of beneficial bacteria (e.g., Lactobacillus, Bifidobacterium), increases SCFA and SBA levels, improves intestinal barrier function, and contributes to improved metabolic outcomes, including reduced inflammation, improved insulin sensitivity, and favorable lipid profiles. These effects are mediated through key molecular pathways involving free fatty acid receptors, bile acid receptors, and inflammatory mediators. Further long-term, mechanistic, and population-diverse studies are essential to optimize formulations and substantiate clinical applications of fermented milk in obesity management.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.70301\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70301\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70301","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The Impact of Fermented Milk Products on Gut Microbiota-Derived Metabolites in Obesity: A Narrative Review
Obesity, a multifactorial metabolic disorder, has been increasingly linked to gut microbiota dysbiosis and its downstream metabolites. Among these, short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) play pivotal roles in energy regulation, glucose and lipid metabolism, inflammation, and host-microbiota crosstalk. Fermented milk products, enriched with probiotics, prebiotics, and bioactive peptides, offer a dietary intervention capable of modulating the gut microbial community and promoting the production of beneficial metabolites. This narrative review synthesizes evidence from both animal and human studies to explore the influence of fermented milk products on SCFA and SBA production in the context of obesity. Findings suggest that fermented milk consumption enhances the abundance of beneficial bacteria (e.g., Lactobacillus, Bifidobacterium), increases SCFA and SBA levels, improves intestinal barrier function, and contributes to improved metabolic outcomes, including reduced inflammation, improved insulin sensitivity, and favorable lipid profiles. These effects are mediated through key molecular pathways involving free fatty acid receptors, bile acid receptors, and inflammatory mediators. Further long-term, mechanistic, and population-diverse studies are essential to optimize formulations and substantiate clinical applications of fermented milk in obesity management.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.