癌症免疫治疗弹性控制器的设计:在分数阶肿瘤免疫模型中的应用

IF 1.9 4区 生物学 Q4 CELL BIOLOGY
Mohamadreza Homayounzade, Shayan Sajadian
{"title":"癌症免疫治疗弹性控制器的设计:在分数阶肿瘤免疫模型中的应用","authors":"Mohamadreza Homayounzade,&nbsp;Shayan Sajadian","doi":"10.1049/syb2.70019","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a robust control method for the automatic treatment of targeted anti-angiogenic molecular therapy based on multi-input multi-output (MIMO) nonlinear fractional and non-fractional models using the backstepping (BS) approach. This protocol aims to eradicate tumour cells while preserving high levels of the body's natural effector cells and maintaining drug dosage within safe limits. The exponential stability of the controlled system is mathematically demonstrated using the Lyapunov theorem. Consequently, the tumour volume's convergence rate can be precisely controlled—a critical factor in cancer treatment. To fine-tune the controller gains, a soft actor-critic (SAC) algorithm within the framework of deep reinforcement learning (DRL) is employed, with a reward function designed based on the specific requirements of the system. Additionally, the Lyapunov theorem is used to mathematically verify the system's robustness against parametric uncertainty. Compared to state-of-the-art approaches, the proposed scheme demonstrates superior long-term performance, achieving complete tumour eradication and drug delivery convergence to zero within 50 days while preserving high effector cell levels.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70019","citationCount":"0","resultStr":"{\"title\":\"Designing a Resilient Controller for Cancer Immunotherapy: Application to a Fractional-Order Tumour-Immune Model\",\"authors\":\"Mohamadreza Homayounzade,&nbsp;Shayan Sajadian\",\"doi\":\"10.1049/syb2.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a robust control method for the automatic treatment of targeted anti-angiogenic molecular therapy based on multi-input multi-output (MIMO) nonlinear fractional and non-fractional models using the backstepping (BS) approach. This protocol aims to eradicate tumour cells while preserving high levels of the body's natural effector cells and maintaining drug dosage within safe limits. The exponential stability of the controlled system is mathematically demonstrated using the Lyapunov theorem. Consequently, the tumour volume's convergence rate can be precisely controlled—a critical factor in cancer treatment. To fine-tune the controller gains, a soft actor-critic (SAC) algorithm within the framework of deep reinforcement learning (DRL) is employed, with a reward function designed based on the specific requirements of the system. Additionally, the Lyapunov theorem is used to mathematically verify the system's robustness against parametric uncertainty. Compared to state-of-the-art approaches, the proposed scheme demonstrates superior long-term performance, achieving complete tumour eradication and drug delivery convergence to zero within 50 days while preserving high effector cell levels.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70019\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70019","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于多输入多输出(MIMO)非线性分数和非分数模型的鲁棒控制方法,用于靶向抗血管生成分子治疗的自动治疗。该方案旨在根除肿瘤细胞,同时保持体内高水平的天然效应细胞,并将药物剂量维持在安全范围内。利用李雅普诺夫定理从数学上证明了被控系统的指数稳定性。因此,肿瘤体积的收敛速度可以被精确控制——这是癌症治疗的一个关键因素。为了对控制器增益进行微调,采用了深度强化学习(DRL)框架内的软行为者批评(SAC)算法,并根据系统的具体要求设计了奖励函数。此外,利用李雅普诺夫定理从数学上验证了系统对参数不确定性的鲁棒性。与最先进的方法相比,所提出的方案具有优越的长期性能,在保持高效细胞水平的同时,在50天内实现完全的肿瘤根除和药物传递收敛到零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a Resilient Controller for Cancer Immunotherapy: Application to a Fractional-Order Tumour-Immune Model

In this paper, we propose a robust control method for the automatic treatment of targeted anti-angiogenic molecular therapy based on multi-input multi-output (MIMO) nonlinear fractional and non-fractional models using the backstepping (BS) approach. This protocol aims to eradicate tumour cells while preserving high levels of the body's natural effector cells and maintaining drug dosage within safe limits. The exponential stability of the controlled system is mathematically demonstrated using the Lyapunov theorem. Consequently, the tumour volume's convergence rate can be precisely controlled—a critical factor in cancer treatment. To fine-tune the controller gains, a soft actor-critic (SAC) algorithm within the framework of deep reinforcement learning (DRL) is employed, with a reward function designed based on the specific requirements of the system. Additionally, the Lyapunov theorem is used to mathematically verify the system's robustness against parametric uncertainty. Compared to state-of-the-art approaches, the proposed scheme demonstrates superior long-term performance, achieving complete tumour eradication and drug delivery convergence to zero within 50 days while preserving high effector cell levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信