{"title":"癌症免疫治疗弹性控制器的设计:在分数阶肿瘤免疫模型中的应用","authors":"Mohamadreza Homayounzade, Shayan Sajadian","doi":"10.1049/syb2.70019","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a robust control method for the automatic treatment of targeted anti-angiogenic molecular therapy based on multi-input multi-output (MIMO) nonlinear fractional and non-fractional models using the backstepping (BS) approach. This protocol aims to eradicate tumour cells while preserving high levels of the body's natural effector cells and maintaining drug dosage within safe limits. The exponential stability of the controlled system is mathematically demonstrated using the Lyapunov theorem. Consequently, the tumour volume's convergence rate can be precisely controlled—a critical factor in cancer treatment. To fine-tune the controller gains, a soft actor-critic (SAC) algorithm within the framework of deep reinforcement learning (DRL) is employed, with a reward function designed based on the specific requirements of the system. Additionally, the Lyapunov theorem is used to mathematically verify the system's robustness against parametric uncertainty. Compared to state-of-the-art approaches, the proposed scheme demonstrates superior long-term performance, achieving complete tumour eradication and drug delivery convergence to zero within 50 days while preserving high effector cell levels.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70019","citationCount":"0","resultStr":"{\"title\":\"Designing a Resilient Controller for Cancer Immunotherapy: Application to a Fractional-Order Tumour-Immune Model\",\"authors\":\"Mohamadreza Homayounzade, Shayan Sajadian\",\"doi\":\"10.1049/syb2.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a robust control method for the automatic treatment of targeted anti-angiogenic molecular therapy based on multi-input multi-output (MIMO) nonlinear fractional and non-fractional models using the backstepping (BS) approach. This protocol aims to eradicate tumour cells while preserving high levels of the body's natural effector cells and maintaining drug dosage within safe limits. The exponential stability of the controlled system is mathematically demonstrated using the Lyapunov theorem. Consequently, the tumour volume's convergence rate can be precisely controlled—a critical factor in cancer treatment. To fine-tune the controller gains, a soft actor-critic (SAC) algorithm within the framework of deep reinforcement learning (DRL) is employed, with a reward function designed based on the specific requirements of the system. Additionally, the Lyapunov theorem is used to mathematically verify the system's robustness against parametric uncertainty. Compared to state-of-the-art approaches, the proposed scheme demonstrates superior long-term performance, achieving complete tumour eradication and drug delivery convergence to zero within 50 days while preserving high effector cell levels.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70019\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70019","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Designing a Resilient Controller for Cancer Immunotherapy: Application to a Fractional-Order Tumour-Immune Model
In this paper, we propose a robust control method for the automatic treatment of targeted anti-angiogenic molecular therapy based on multi-input multi-output (MIMO) nonlinear fractional and non-fractional models using the backstepping (BS) approach. This protocol aims to eradicate tumour cells while preserving high levels of the body's natural effector cells and maintaining drug dosage within safe limits. The exponential stability of the controlled system is mathematically demonstrated using the Lyapunov theorem. Consequently, the tumour volume's convergence rate can be precisely controlled—a critical factor in cancer treatment. To fine-tune the controller gains, a soft actor-critic (SAC) algorithm within the framework of deep reinforcement learning (DRL) is employed, with a reward function designed based on the specific requirements of the system. Additionally, the Lyapunov theorem is used to mathematically verify the system's robustness against parametric uncertainty. Compared to state-of-the-art approaches, the proposed scheme demonstrates superior long-term performance, achieving complete tumour eradication and drug delivery convergence to zero within 50 days while preserving high effector cell levels.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.