最小$k$k顶点连通图搜索

IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yang Liu;Hejiao Huang;Kaiqiang Yu;Shengxin Liu;Cheng Long
{"title":"最小$k$k顶点连通图搜索","authors":"Yang Liu;Hejiao Huang;Kaiqiang Yu;Shengxin Liu;Cheng Long","doi":"10.1109/TKDE.2025.3565844","DOIUrl":null,"url":null,"abstract":"The <inline-formula><tex-math>$k$</tex-math></inline-formula>-vertex connected (<inline-formula><tex-math>$k$</tex-math></inline-formula>-VC) subgraph, which remains connected with fewer than <inline-formula><tex-math>$k$</tex-math></inline-formula> vertices being removed, is an essential structure in graph mining. It has found many applications, such as survivable network design and web search optimization. However, existing studies focus on mining maximal <inline-formula><tex-math>$k$</tex-math></inline-formula>-VCs, which are excessively large yet less cohesive in real applications. In this paper, we study the minimum <i><inline-formula><tex-math>$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic></alternatives></inline-formula>-VC search (</i><i><monospace>MinVC</monospace></i><i>)</i> problem, seeking to find a <inline-formula><tex-math>$k$</tex-math></inline-formula>-VC with the minimum number of vertices. We formally prove that this problem is NP-hard and then propose two algorithms to obtain the exact solution. The basic method, called <monospace>Enum</monospace>, follows a branch-and-bound framework with some pruning rules, which directly enumerates all possible vertex sets. Nonetheless, it suffers from the efficiency issues due to the non-hereditary property of the <inline-formula><tex-math>$k$</tex-math></inline-formula>-VC model. To address this challenge, we propose an advanced method, called <monospace>VCtoB</monospace>, which divides the <monospace>MinVC</monospace> problem into several new sub-problems, called the <i>fixed-size <inline-formula><tex-math>$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic></alternatives></inline-formula>-VC</i> problems. Each of them can be solved efficiently by exploiting the hereditary property of the <inline-formula><tex-math>$s$</tex-math></inline-formula>-bundle model. Finally, our empirical experiments on 139 real-world networks demonstrate that <monospace>VCtoB</monospace> achieves performance improvement of up to six orders of magnitude over the baseline.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 7","pages":"4159-4165"},"PeriodicalIF":10.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum $k$k-Vertex Connected Graph Search\",\"authors\":\"Yang Liu;Hejiao Huang;Kaiqiang Yu;Shengxin Liu;Cheng Long\",\"doi\":\"10.1109/TKDE.2025.3565844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The <inline-formula><tex-math>$k$</tex-math></inline-formula>-vertex connected (<inline-formula><tex-math>$k$</tex-math></inline-formula>-VC) subgraph, which remains connected with fewer than <inline-formula><tex-math>$k$</tex-math></inline-formula> vertices being removed, is an essential structure in graph mining. It has found many applications, such as survivable network design and web search optimization. However, existing studies focus on mining maximal <inline-formula><tex-math>$k$</tex-math></inline-formula>-VCs, which are excessively large yet less cohesive in real applications. In this paper, we study the minimum <i><inline-formula><tex-math>$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic></alternatives></inline-formula>-VC search (</i><i><monospace>MinVC</monospace></i><i>)</i> problem, seeking to find a <inline-formula><tex-math>$k$</tex-math></inline-formula>-VC with the minimum number of vertices. We formally prove that this problem is NP-hard and then propose two algorithms to obtain the exact solution. The basic method, called <monospace>Enum</monospace>, follows a branch-and-bound framework with some pruning rules, which directly enumerates all possible vertex sets. Nonetheless, it suffers from the efficiency issues due to the non-hereditary property of the <inline-formula><tex-math>$k$</tex-math></inline-formula>-VC model. To address this challenge, we propose an advanced method, called <monospace>VCtoB</monospace>, which divides the <monospace>MinVC</monospace> problem into several new sub-problems, called the <i>fixed-size <inline-formula><tex-math>$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic></alternatives></inline-formula>-VC</i> problems. Each of them can be solved efficiently by exploiting the hereditary property of the <inline-formula><tex-math>$s$</tex-math></inline-formula>-bundle model. Finally, our empirical experiments on 139 real-world networks demonstrate that <monospace>VCtoB</monospace> achieves performance improvement of up to six orders of magnitude over the baseline.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 7\",\"pages\":\"4159-4165\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10982036/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10982036/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

$k$顶点连通子图($k$-VC)是图挖掘中的一个基本结构,它在被移除的顶点少于$k$时保持连通。它已经发现了许多应用,如可生存的网络设计和网络搜索优化。然而,现有的研究主要集中在挖掘最大的$k$- vc,这在实际应用中过于庞大而缺乏凝聚力。本文研究最小$k$k-VC搜索(MinVC)问题,寻求具有最小顶点数的$k$-VC。我们正式证明了这个问题是np困难的,然后提出了两种算法来获得精确解。基本方法称为Enum,它遵循带有一些修剪规则的分支定界框架,直接枚举所有可能的顶点集。尽管如此,由于$k$-VC模型的非遗传特性,它存在效率问题。为了应对这一挑战,我们提出了一种称为VCtoB的高级方法,该方法将MinVC问题划分为几个新的子问题,称为固定大小的$k$k- vc问题。利用$s$-bundle模型的遗传特性,可以有效地求解每一个问题。最后,我们在139个真实网络上的经验实验表明,VCtoB在基线上实现了高达6个数量级的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum $k$k-Vertex Connected Graph Search
The $k$-vertex connected ($k$-VC) subgraph, which remains connected with fewer than $k$ vertices being removed, is an essential structure in graph mining. It has found many applications, such as survivable network design and web search optimization. However, existing studies focus on mining maximal $k$-VCs, which are excessively large yet less cohesive in real applications. In this paper, we study the minimum $k$k-VC search (MinVC) problem, seeking to find a $k$-VC with the minimum number of vertices. We formally prove that this problem is NP-hard and then propose two algorithms to obtain the exact solution. The basic method, called Enum, follows a branch-and-bound framework with some pruning rules, which directly enumerates all possible vertex sets. Nonetheless, it suffers from the efficiency issues due to the non-hereditary property of the $k$-VC model. To address this challenge, we propose an advanced method, called VCtoB, which divides the MinVC problem into several new sub-problems, called the fixed-size $k$k-VC problems. Each of them can be solved efficiently by exploiting the hereditary property of the $s$-bundle model. Finally, our empirical experiments on 139 real-world networks demonstrate that VCtoB achieves performance improvement of up to six orders of magnitude over the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信