基于区间2型模糊逻辑和合作博弈策略的车辆协同通信新方法

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jie Zhang;Zhihao Zhang;Degan Zhang;Chenhao Ni;Ting Zhang;Xingru Jiang
{"title":"基于区间2型模糊逻辑和合作博弈策略的车辆协同通信新方法","authors":"Jie Zhang;Zhihao Zhang;Degan Zhang;Chenhao Ni;Ting Zhang;Xingru Jiang","doi":"10.1109/TSUSC.2024.3503580","DOIUrl":null,"url":null,"abstract":"As an important branch of the Internet of Things (IoT), vehicular networks play a crucial role in the construction of intelligent transportation systems. However, due to the rapid movement of vehicles and signal obstruction, achieving high- quality and low-latency communication in vehicular networks remains a significant challenge. To address this issue, this paper proposes a novel data communication method based on interval type-2 fuzzy logic and cooperative game theory. Firstly, interval type-2 fuzzy logic is utilized to infer vehicle stability, thereby selecting high-quality backbone nodes. Concurrently, the memory and forgetfulness functions of the Gated Recurrent Unit are employed to retain critical data packets. Subsequently, a greedy algorithm and cooperative game theory model are used to describe the behavior of vehicles in Roadside-to-Vehicle (R2V) communication and Vehicle-to- Vehicle (V2V) communication, respectively. This approach encourages backbone nodes to cooperate and serve other vehicles based on a benefit function. Experimental results demonstrate that the proposed method excels in terms of transmission delay, coverage range, and data packet delivery success rate.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 3","pages":"588-600"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Approach of Vehicular Cooperative Communication Based on Strategy of Interval Type-2 Fuzzy Logic and Cooperative Game\",\"authors\":\"Jie Zhang;Zhihao Zhang;Degan Zhang;Chenhao Ni;Ting Zhang;Xingru Jiang\",\"doi\":\"10.1109/TSUSC.2024.3503580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an important branch of the Internet of Things (IoT), vehicular networks play a crucial role in the construction of intelligent transportation systems. However, due to the rapid movement of vehicles and signal obstruction, achieving high- quality and low-latency communication in vehicular networks remains a significant challenge. To address this issue, this paper proposes a novel data communication method based on interval type-2 fuzzy logic and cooperative game theory. Firstly, interval type-2 fuzzy logic is utilized to infer vehicle stability, thereby selecting high-quality backbone nodes. Concurrently, the memory and forgetfulness functions of the Gated Recurrent Unit are employed to retain critical data packets. Subsequently, a greedy algorithm and cooperative game theory model are used to describe the behavior of vehicles in Roadside-to-Vehicle (R2V) communication and Vehicle-to- Vehicle (V2V) communication, respectively. This approach encourages backbone nodes to cooperate and serve other vehicles based on a benefit function. Experimental results demonstrate that the proposed method excels in terms of transmission delay, coverage range, and data packet delivery success rate.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"10 3\",\"pages\":\"588-600\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10759771/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759771/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

车联网作为物联网的一个重要分支,在智能交通系统建设中起着至关重要的作用。然而,由于车辆的快速运动和信号障碍,在车载网络中实现高质量和低延迟的通信仍然是一个重大挑战。针对这一问题,本文提出了一种基于区间2型模糊逻辑和合作博弈论的数据通信方法。首先,利用区间2型模糊逻辑对车辆稳定性进行推断,从而选择优质骨干节点;同时,门控循环单元的记忆和遗忘功能被用来保留关键数据包。随后,利用贪婪算法和合作博弈论模型分别描述了车辆在R2V通信和V2V通信中的行为。这种方法鼓励骨干节点基于利益函数进行合作并为其他车辆服务。实验结果表明,该方法在传输延迟、覆盖范围和数据包发送成功率方面都有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Approach of Vehicular Cooperative Communication Based on Strategy of Interval Type-2 Fuzzy Logic and Cooperative Game
As an important branch of the Internet of Things (IoT), vehicular networks play a crucial role in the construction of intelligent transportation systems. However, due to the rapid movement of vehicles and signal obstruction, achieving high- quality and low-latency communication in vehicular networks remains a significant challenge. To address this issue, this paper proposes a novel data communication method based on interval type-2 fuzzy logic and cooperative game theory. Firstly, interval type-2 fuzzy logic is utilized to infer vehicle stability, thereby selecting high-quality backbone nodes. Concurrently, the memory and forgetfulness functions of the Gated Recurrent Unit are employed to retain critical data packets. Subsequently, a greedy algorithm and cooperative game theory model are used to describe the behavior of vehicles in Roadside-to-Vehicle (R2V) communication and Vehicle-to- Vehicle (V2V) communication, respectively. This approach encourages backbone nodes to cooperate and serve other vehicles based on a benefit function. Experimental results demonstrate that the proposed method excels in terms of transmission delay, coverage range, and data packet delivery success rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信