Mads Weile, Sergii Grytsiuk, Aubrey Penn, Daniel G. Chica, Xavier Roy, Kseniia Mosina, Zdenek Sofer, Jakob Schiøtz, Stig Helveg, Malte Rösner, Frances M. Ross, Julian Klein
{"title":"通过电子显微镜和深度学习发现CrSBr中的缺陷复合物","authors":"Mads Weile, Sergii Grytsiuk, Aubrey Penn, Daniel G. Chica, Xavier Roy, Kseniia Mosina, Zdenek Sofer, Jakob Schiøtz, Stig Helveg, Malte Rösner, Frances M. Ross, Julian Klein","doi":"10.1103/physrevx.15.021080","DOIUrl":null,"url":null,"abstract":"Atomic defects underpin the properties of van der Waals materials, and their understanding is essential for advancing quantum and energy technologies. Scanning transmission electron microscopy is a powerful tool for defect identification in atomically thin materials, and extending it to multilayer and beam-sensitive materials would accelerate their exploration. Here, we establish a comprehensive defect library in a bilayer of the magnetic quasi-1D semiconductor CrSBr by combining atomic-resolution imaging, deep learning, and calculations. We apply a custom-developed machine learning work flow to detect, classify, and average point vacancy defects. This classification enables us to uncover several distinct Cr interstitial defect complexes, combined Cr and Br vacancy defect complexes, and lines of vacancy defects that extend over many unit cells. We show that their occurrence is in agreement with our computed structures and binding energy densities, reflecting the intriguing layer interlocked crystal structure of CrSBr. Our calculations show that the interstitial defect complexes give rise to highly localized electronic states. These states are of particular interest due to the reduced electronic dimensionality and magnetic properties of CrSBr and are, furthermore, predicted to be optically active. Our results broaden the scope of defect studies in challenging materials and reveal new defect types in bilayer CrSBr that can be extrapolated to the bulk and to over 20 materials belonging to the same FeOCl structural family. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"5 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect Complexes in CrSBr Revealed Through Electron Microscopy and Deep Learning\",\"authors\":\"Mads Weile, Sergii Grytsiuk, Aubrey Penn, Daniel G. Chica, Xavier Roy, Kseniia Mosina, Zdenek Sofer, Jakob Schiøtz, Stig Helveg, Malte Rösner, Frances M. Ross, Julian Klein\",\"doi\":\"10.1103/physrevx.15.021080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomic defects underpin the properties of van der Waals materials, and their understanding is essential for advancing quantum and energy technologies. Scanning transmission electron microscopy is a powerful tool for defect identification in atomically thin materials, and extending it to multilayer and beam-sensitive materials would accelerate their exploration. Here, we establish a comprehensive defect library in a bilayer of the magnetic quasi-1D semiconductor CrSBr by combining atomic-resolution imaging, deep learning, and calculations. We apply a custom-developed machine learning work flow to detect, classify, and average point vacancy defects. This classification enables us to uncover several distinct Cr interstitial defect complexes, combined Cr and Br vacancy defect complexes, and lines of vacancy defects that extend over many unit cells. We show that their occurrence is in agreement with our computed structures and binding energy densities, reflecting the intriguing layer interlocked crystal structure of CrSBr. Our calculations show that the interstitial defect complexes give rise to highly localized electronic states. These states are of particular interest due to the reduced electronic dimensionality and magnetic properties of CrSBr and are, furthermore, predicted to be optically active. Our results broaden the scope of defect studies in challenging materials and reveal new defect types in bilayer CrSBr that can be extrapolated to the bulk and to over 20 materials belonging to the same FeOCl structural family. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021080\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021080","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Defect Complexes in CrSBr Revealed Through Electron Microscopy and Deep Learning
Atomic defects underpin the properties of van der Waals materials, and their understanding is essential for advancing quantum and energy technologies. Scanning transmission electron microscopy is a powerful tool for defect identification in atomically thin materials, and extending it to multilayer and beam-sensitive materials would accelerate their exploration. Here, we establish a comprehensive defect library in a bilayer of the magnetic quasi-1D semiconductor CrSBr by combining atomic-resolution imaging, deep learning, and calculations. We apply a custom-developed machine learning work flow to detect, classify, and average point vacancy defects. This classification enables us to uncover several distinct Cr interstitial defect complexes, combined Cr and Br vacancy defect complexes, and lines of vacancy defects that extend over many unit cells. We show that their occurrence is in agreement with our computed structures and binding energy densities, reflecting the intriguing layer interlocked crystal structure of CrSBr. Our calculations show that the interstitial defect complexes give rise to highly localized electronic states. These states are of particular interest due to the reduced electronic dimensionality and magnetic properties of CrSBr and are, furthermore, predicted to be optically active. Our results broaden the scope of defect studies in challenging materials and reveal new defect types in bilayer CrSBr that can be extrapolated to the bulk and to over 20 materials belonging to the same FeOCl structural family. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.