Li Deng, Yang Zou, Junbao Zhu, Lei Li and Yanting Wang
{"title":"突变诱导的Fyn SH2结构域刚性以牺牲肽特异性为代价增强py结合亲和力","authors":"Li Deng, Yang Zou, Junbao Zhu, Lei Li and Yanting Wang","doi":"10.1039/D5CP00015G","DOIUrl":null,"url":null,"abstract":"<p >Interactions between SH2 domains and tyrosine-phosphorylated (pY) peptides are essential for cellular signaling. While structural studies have revealed how triple-point Fyn SH2 mutants achieve ultra-high pY-peptide affinity, the dynamic consequences of these mutations remain unexplored. In this study, we performed extensive all-atom molecular dynamics simulations on the isolated wild-type Fyn SH2 domain, its mutant, and their complexes with the pY-peptide (EPQpYEEIPIYL). Comparative analyses of these simulations provided dynamic insights into how mutations within the pY-binding pocket alter the interaction between Fyn SH2 domain and the pY-peptide. Our results demonstrate that the mutations significantly influence the dynamic stability of unstructured regions within the SH2 domain and the domain-peptide interface. Specifically, the mutations enhance the rigidity and stability of the pY-binding pocket, as well as the overall structural stability of the domain, including the central β-sheet and terminal regions. This increased rigidity in the mutant enhances interactions between the pY-binding pocket and pY but weakens the interaction with the peptide residue at the +3 position relative to pY, thereby compromising the specificity of the domain-peptide interaction. These findings highlight that the interaction between SH2 domains and pY-peptides is governed not only by the structural properties of the pY-binding pocket but also by the dynamic stability of the domain itself. This insight could guide the experimental design of SH2 domains engineered to recognize post-translational modifications with diverse characteristics.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 24","pages":" 13091-13102"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutation-induced rigidity in the Fyn SH2 domain enhances pY-binding affinity at the cost of peptide specificity†\",\"authors\":\"Li Deng, Yang Zou, Junbao Zhu, Lei Li and Yanting Wang\",\"doi\":\"10.1039/D5CP00015G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Interactions between SH2 domains and tyrosine-phosphorylated (pY) peptides are essential for cellular signaling. While structural studies have revealed how triple-point Fyn SH2 mutants achieve ultra-high pY-peptide affinity, the dynamic consequences of these mutations remain unexplored. In this study, we performed extensive all-atom molecular dynamics simulations on the isolated wild-type Fyn SH2 domain, its mutant, and their complexes with the pY-peptide (EPQpYEEIPIYL). Comparative analyses of these simulations provided dynamic insights into how mutations within the pY-binding pocket alter the interaction between Fyn SH2 domain and the pY-peptide. Our results demonstrate that the mutations significantly influence the dynamic stability of unstructured regions within the SH2 domain and the domain-peptide interface. Specifically, the mutations enhance the rigidity and stability of the pY-binding pocket, as well as the overall structural stability of the domain, including the central β-sheet and terminal regions. This increased rigidity in the mutant enhances interactions between the pY-binding pocket and pY but weakens the interaction with the peptide residue at the +3 position relative to pY, thereby compromising the specificity of the domain-peptide interaction. These findings highlight that the interaction between SH2 domains and pY-peptides is governed not only by the structural properties of the pY-binding pocket but also by the dynamic stability of the domain itself. This insight could guide the experimental design of SH2 domains engineered to recognize post-translational modifications with diverse characteristics.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 24\",\"pages\":\" 13091-13102\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00015g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00015g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mutation-induced rigidity in the Fyn SH2 domain enhances pY-binding affinity at the cost of peptide specificity†
Interactions between SH2 domains and tyrosine-phosphorylated (pY) peptides are essential for cellular signaling. While structural studies have revealed how triple-point Fyn SH2 mutants achieve ultra-high pY-peptide affinity, the dynamic consequences of these mutations remain unexplored. In this study, we performed extensive all-atom molecular dynamics simulations on the isolated wild-type Fyn SH2 domain, its mutant, and their complexes with the pY-peptide (EPQpYEEIPIYL). Comparative analyses of these simulations provided dynamic insights into how mutations within the pY-binding pocket alter the interaction between Fyn SH2 domain and the pY-peptide. Our results demonstrate that the mutations significantly influence the dynamic stability of unstructured regions within the SH2 domain and the domain-peptide interface. Specifically, the mutations enhance the rigidity and stability of the pY-binding pocket, as well as the overall structural stability of the domain, including the central β-sheet and terminal regions. This increased rigidity in the mutant enhances interactions between the pY-binding pocket and pY but weakens the interaction with the peptide residue at the +3 position relative to pY, thereby compromising the specificity of the domain-peptide interaction. These findings highlight that the interaction between SH2 domains and pY-peptides is governed not only by the structural properties of the pY-binding pocket but also by the dynamic stability of the domain itself. This insight could guide the experimental design of SH2 domains engineered to recognize post-translational modifications with diverse characteristics.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.