Fernando Bussiman, Daniela Lourenco, Jorge Hidalgo, Ching-Yi Chen, Justin Holl, Ignacy Misztal, Zulma G. Vitezica
{"title":"基因型与高维环境数据的环境相互作用:以猪为例","authors":"Fernando Bussiman, Daniela Lourenco, Jorge Hidalgo, Ching-Yi Chen, Justin Holl, Ignacy Misztal, Zulma G. Vitezica","doi":"10.1186/s12711-025-00974-2","DOIUrl":null,"url":null,"abstract":"In traditional genetic prediction models, environments are typically treated as uncorrelated effects, either fixed or random. Environments can be correlated when they share the same location, management practices, or climate conditions. The temperature-humidity index (THI) is often used to address environmental effects related to climate or heat stress. However, it does not fully describe the complete climate profile of a specific location. Therefore, it is more appropriate to use multiple environmental covariates (ECs), when available, to describe the weather in a specific environment. This raises the question of whether publicly available weather information (such as NASA POWER) is useful for genomic predictions. Genotype-by-environment interaction (GxE) can be modeled using multiple-trait models or reaction norms. However, the former requires a substantial number of records per environment, while the latter can result in over-parametrized models when the number of ECs is large. This study investigated whether using ECs is a suitable strategy to correlate environments (herds) and to model GxE in the genomic prediction of purebred pigs for production traits. We evaluated different models to account for environmental effects and GxE. When environments were correlated based on ECs, we observed an increase in environmental variance, which was accompanied by an increase in phenotypic variance and a decrease in heritability. Furthermore, including environments as an uncorrelated random effect yielded the same accuracy of estimated breeding values as treating them as correlated based on weather information. All the tested models exhibited the same bias, but the predictions from the multiple-trait models were under-dispersed. Evidence of GxE was observed for both traits; however, there were more genetically unconnected environments for backfat thickness than for average daily gain. Using outdoor weather information to correlate environments and model GxE offers limited advantages for genomic predictions in pigs. Although it adds complexity to the model and increases computing time without improving accuracy, it does enhance model fit. Including environment information (e.g. herd effect) as an uncorrelated random effect in the model could help address GxE and environmental effects.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"9 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genotype-by-environment interaction with high-dimensional environmental data: an example in pigs\",\"authors\":\"Fernando Bussiman, Daniela Lourenco, Jorge Hidalgo, Ching-Yi Chen, Justin Holl, Ignacy Misztal, Zulma G. Vitezica\",\"doi\":\"10.1186/s12711-025-00974-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In traditional genetic prediction models, environments are typically treated as uncorrelated effects, either fixed or random. Environments can be correlated when they share the same location, management practices, or climate conditions. The temperature-humidity index (THI) is often used to address environmental effects related to climate or heat stress. However, it does not fully describe the complete climate profile of a specific location. Therefore, it is more appropriate to use multiple environmental covariates (ECs), when available, to describe the weather in a specific environment. This raises the question of whether publicly available weather information (such as NASA POWER) is useful for genomic predictions. Genotype-by-environment interaction (GxE) can be modeled using multiple-trait models or reaction norms. However, the former requires a substantial number of records per environment, while the latter can result in over-parametrized models when the number of ECs is large. This study investigated whether using ECs is a suitable strategy to correlate environments (herds) and to model GxE in the genomic prediction of purebred pigs for production traits. We evaluated different models to account for environmental effects and GxE. When environments were correlated based on ECs, we observed an increase in environmental variance, which was accompanied by an increase in phenotypic variance and a decrease in heritability. Furthermore, including environments as an uncorrelated random effect yielded the same accuracy of estimated breeding values as treating them as correlated based on weather information. All the tested models exhibited the same bias, but the predictions from the multiple-trait models were under-dispersed. Evidence of GxE was observed for both traits; however, there were more genetically unconnected environments for backfat thickness than for average daily gain. Using outdoor weather information to correlate environments and model GxE offers limited advantages for genomic predictions in pigs. Although it adds complexity to the model and increases computing time without improving accuracy, it does enhance model fit. Including environment information (e.g. herd effect) as an uncorrelated random effect in the model could help address GxE and environmental effects.\",\"PeriodicalId\":55120,\"journal\":{\"name\":\"Genetics Selection Evolution\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics Selection Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12711-025-00974-2\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-025-00974-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Genotype-by-environment interaction with high-dimensional environmental data: an example in pigs
In traditional genetic prediction models, environments are typically treated as uncorrelated effects, either fixed or random. Environments can be correlated when they share the same location, management practices, or climate conditions. The temperature-humidity index (THI) is often used to address environmental effects related to climate or heat stress. However, it does not fully describe the complete climate profile of a specific location. Therefore, it is more appropriate to use multiple environmental covariates (ECs), when available, to describe the weather in a specific environment. This raises the question of whether publicly available weather information (such as NASA POWER) is useful for genomic predictions. Genotype-by-environment interaction (GxE) can be modeled using multiple-trait models or reaction norms. However, the former requires a substantial number of records per environment, while the latter can result in over-parametrized models when the number of ECs is large. This study investigated whether using ECs is a suitable strategy to correlate environments (herds) and to model GxE in the genomic prediction of purebred pigs for production traits. We evaluated different models to account for environmental effects and GxE. When environments were correlated based on ECs, we observed an increase in environmental variance, which was accompanied by an increase in phenotypic variance and a decrease in heritability. Furthermore, including environments as an uncorrelated random effect yielded the same accuracy of estimated breeding values as treating them as correlated based on weather information. All the tested models exhibited the same bias, but the predictions from the multiple-trait models were under-dispersed. Evidence of GxE was observed for both traits; however, there were more genetically unconnected environments for backfat thickness than for average daily gain. Using outdoor weather information to correlate environments and model GxE offers limited advantages for genomic predictions in pigs. Although it adds complexity to the model and increases computing time without improving accuracy, it does enhance model fit. Including environment information (e.g. herd effect) as an uncorrelated random effect in the model could help address GxE and environmental effects.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.