具有单细胞截面的结晶类肽纳米纤维

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yen Jea Lee, Morgan Seidler, Xubo Luo, Glenn L. Butterfoss, Tianyi Yu, Behzad Rad, Sunting Xuan, Chenhui Zhu, David Prendergast, Nitash P. Balsara, Brooks A. Abel*, Ronald N. Zuckermann* and Xi Jiang*, 
{"title":"具有单细胞截面的结晶类肽纳米纤维","authors":"Yen Jea Lee,&nbsp;Morgan Seidler,&nbsp;Xubo Luo,&nbsp;Glenn L. Butterfoss,&nbsp;Tianyi Yu,&nbsp;Behzad Rad,&nbsp;Sunting Xuan,&nbsp;Chenhui Zhu,&nbsp;David Prendergast,&nbsp;Nitash P. Balsara,&nbsp;Brooks A. Abel*,&nbsp;Ronald N. Zuckermann* and Xi Jiang*,&nbsp;","doi":"10.1021/jacs.5c03996","DOIUrl":null,"url":null,"abstract":"<p >Ultranarrow crystalline one-dimensional nanostructures formed from soft materials facilitate precise structural control in nanomaterial design, which is essential for biomedicine and nanotechnology applications. Systematic control of their hierarchical structure is challenging due to the complexities of simultaneously manipulating multiple noncovalent interactions at such small scales. We employed a polypeptoid crystal motif as a supramolecular synthon to engineer ultranarrow crystalline nanofibers constrained to a single lattice axis by incorporating a single ionizable side chain into the hydrophobic core of a nanosheet-forming peptoid. Cryogenic transmission electron microscopy of the nanofibers revealed detailed molecular arrangements of a unit-cell cross-section and the presence of distinct pH-dependent lattice isoforms that resulted in morphological transformations. Molecular dynamics simulations demonstrated that the ionizable side chain plays a critical role in changing the local conformation of the unit cell, which further impacts the dimensionality of hierarchical structures. Moreover, these fibers were readily functionalized with biological ligands to afford one-dimensional (1D) protein arrays. This approach for the high-precision bottom-up assembly of ultranarrow 1D nanostructures offers significant potential for developing novel biomimetic nanostructures.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 31","pages":"27390–27402"},"PeriodicalIF":15.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystalline Peptoid Nanofibers with a Single-Unit Cell Cross Section\",\"authors\":\"Yen Jea Lee,&nbsp;Morgan Seidler,&nbsp;Xubo Luo,&nbsp;Glenn L. Butterfoss,&nbsp;Tianyi Yu,&nbsp;Behzad Rad,&nbsp;Sunting Xuan,&nbsp;Chenhui Zhu,&nbsp;David Prendergast,&nbsp;Nitash P. Balsara,&nbsp;Brooks A. Abel*,&nbsp;Ronald N. Zuckermann* and Xi Jiang*,&nbsp;\",\"doi\":\"10.1021/jacs.5c03996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ultranarrow crystalline one-dimensional nanostructures formed from soft materials facilitate precise structural control in nanomaterial design, which is essential for biomedicine and nanotechnology applications. Systematic control of their hierarchical structure is challenging due to the complexities of simultaneously manipulating multiple noncovalent interactions at such small scales. We employed a polypeptoid crystal motif as a supramolecular synthon to engineer ultranarrow crystalline nanofibers constrained to a single lattice axis by incorporating a single ionizable side chain into the hydrophobic core of a nanosheet-forming peptoid. Cryogenic transmission electron microscopy of the nanofibers revealed detailed molecular arrangements of a unit-cell cross-section and the presence of distinct pH-dependent lattice isoforms that resulted in morphological transformations. Molecular dynamics simulations demonstrated that the ionizable side chain plays a critical role in changing the local conformation of the unit cell, which further impacts the dimensionality of hierarchical structures. Moreover, these fibers were readily functionalized with biological ligands to afford one-dimensional (1D) protein arrays. This approach for the high-precision bottom-up assembly of ultranarrow 1D nanostructures offers significant potential for developing novel biomimetic nanostructures.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 31\",\"pages\":\"27390–27402\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c03996\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c03996","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由软质材料形成的超微晶一维纳米结构为纳米材料设计提供了精确的结构控制,这对生物医学和纳米技术的应用至关重要。由于在如此小的尺度上同时操纵多个非共价相互作用的复杂性,系统地控制它们的层次结构是具有挑战性的。我们采用多肽类晶体基序作为超分子合成体,通过将单个可电离侧链结合到纳米片形成肽类的疏水核心中,来设计约束在单个晶格轴上的超细晶体纳米纤维。纳米纤维的低温透射电子显微镜显示了单位细胞截面的详细分子排列和不同的ph依赖性晶格异构体的存在,导致形态转变。分子动力学模拟表明,可电离侧链在改变单体细胞的局部构象方面起着至关重要的作用,这进一步影响了层次结构的维度。此外,这些纤维很容易与生物配体功能化,以提供一维(1D)蛋白质阵列。这种超一维纳米结构的高精度自下而上组装方法为开发新型仿生纳米结构提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystalline Peptoid Nanofibers with a Single-Unit Cell Cross Section

Crystalline Peptoid Nanofibers with a Single-Unit Cell Cross Section

Crystalline Peptoid Nanofibers with a Single-Unit Cell Cross Section

Ultranarrow crystalline one-dimensional nanostructures formed from soft materials facilitate precise structural control in nanomaterial design, which is essential for biomedicine and nanotechnology applications. Systematic control of their hierarchical structure is challenging due to the complexities of simultaneously manipulating multiple noncovalent interactions at such small scales. We employed a polypeptoid crystal motif as a supramolecular synthon to engineer ultranarrow crystalline nanofibers constrained to a single lattice axis by incorporating a single ionizable side chain into the hydrophobic core of a nanosheet-forming peptoid. Cryogenic transmission electron microscopy of the nanofibers revealed detailed molecular arrangements of a unit-cell cross-section and the presence of distinct pH-dependent lattice isoforms that resulted in morphological transformations. Molecular dynamics simulations demonstrated that the ionizable side chain plays a critical role in changing the local conformation of the unit cell, which further impacts the dimensionality of hierarchical structures. Moreover, these fibers were readily functionalized with biological ligands to afford one-dimensional (1D) protein arrays. This approach for the high-precision bottom-up assembly of ultranarrow 1D nanostructures offers significant potential for developing novel biomimetic nanostructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信