人工智能心电图诊断Brugada综合征的系统回顾和荟萃分析。

IF 2.6
Lucas M Barbosa, Roberto Mazetto, Maria L R Defante, Vânio L J Antunes, Vinicius Martins Rodrigues Oliveira, Douglas Cavalcante, Luanna Paula Garcez de Carvalho Feitoza, Ivo Queiroz, André Luiz Carvalho Ferreira, Guilherme Almeida, Elísio Bulhões, Maria do Carmo P Nunes, Mauricio Ibrahim Scanavacca, Francisco Darrieux, Josep Brugada
{"title":"人工智能心电图诊断Brugada综合征的系统回顾和荟萃分析。","authors":"Lucas M Barbosa, Roberto Mazetto, Maria L R Defante, Vânio L J Antunes, Vinicius Martins Rodrigues Oliveira, Douglas Cavalcante, Luanna Paula Garcez de Carvalho Feitoza, Ivo Queiroz, André Luiz Carvalho Ferreira, Guilherme Almeida, Elísio Bulhões, Maria do Carmo P Nunes, Mauricio Ibrahim Scanavacca, Francisco Darrieux, Josep Brugada","doi":"10.1007/s10840-025-02075-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brugada syndrome (BrS) is a serious condition linked to sudden cardiac death in individuals who are otherwise healthy. Notably, drug-induced BrS accounts for 50% to 70% of all documented cases. The utilization of artificial intelligence (AI) models in the analysis of electrocardiograms (ECGs) represents a promising approach for the detection of BrS.</p><p><strong>Purpose: </strong>This meta-analysis aims to evaluate the effectiveness of AI models in diagnosing BrS through ECG analysis.</p><p><strong>Methods: </strong>We conducted a systematic search across PubMed, Embase, and Cochrane databases, focusing on AI-based models for ECG analysis related to BrS detection. Key outcomes measured included sensitivity, specificity, and the summary receiver operating characteristic (SROC) curve. Pooled proportions were calculated using a random-effects model with 95% confidence intervals (CIs), and heterogeneity was using Zhou and Dendukuri I<sup>2</sup> approach. Additionally, a leave-one-out sensitivity analysis was performed to evaluate the impact of each one of the included studies on the pooled results and heterogeneity. All statistical analyses were conducted using R version 4.4.2.</p><p><strong>Results: </strong>Our analysis included six studies encompassing ECG data from 2,179 patients, all employing AI algorithms for ECG interpretation. The quantitative analysis revealed an area under the curve (AUC) of 0.898, a sensitivity of 78.9% (95% CI: 69.6 to 85.9), and a specificity of 87.7% (95% CI: 79.9 to 92.7). Notably, the sensitivity analysis without Zanchi et al., significantly reduced the heterogeneity (I<sup>2</sup> = 0%). However, the other analyses corroborated with our general findings.</p><p><strong>Conclusion: </strong>AI-driven ECG interpretation demonstrates to be a viable option in detecting BrS.</p>","PeriodicalId":520675,"journal":{"name":"Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review and meta-analysis of artificial intelligence ECGs performance in the diagnosis of Brugada Syndrome.\",\"authors\":\"Lucas M Barbosa, Roberto Mazetto, Maria L R Defante, Vânio L J Antunes, Vinicius Martins Rodrigues Oliveira, Douglas Cavalcante, Luanna Paula Garcez de Carvalho Feitoza, Ivo Queiroz, André Luiz Carvalho Ferreira, Guilherme Almeida, Elísio Bulhões, Maria do Carmo P Nunes, Mauricio Ibrahim Scanavacca, Francisco Darrieux, Josep Brugada\",\"doi\":\"10.1007/s10840-025-02075-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Brugada syndrome (BrS) is a serious condition linked to sudden cardiac death in individuals who are otherwise healthy. Notably, drug-induced BrS accounts for 50% to 70% of all documented cases. The utilization of artificial intelligence (AI) models in the analysis of electrocardiograms (ECGs) represents a promising approach for the detection of BrS.</p><p><strong>Purpose: </strong>This meta-analysis aims to evaluate the effectiveness of AI models in diagnosing BrS through ECG analysis.</p><p><strong>Methods: </strong>We conducted a systematic search across PubMed, Embase, and Cochrane databases, focusing on AI-based models for ECG analysis related to BrS detection. Key outcomes measured included sensitivity, specificity, and the summary receiver operating characteristic (SROC) curve. Pooled proportions were calculated using a random-effects model with 95% confidence intervals (CIs), and heterogeneity was using Zhou and Dendukuri I<sup>2</sup> approach. Additionally, a leave-one-out sensitivity analysis was performed to evaluate the impact of each one of the included studies on the pooled results and heterogeneity. All statistical analyses were conducted using R version 4.4.2.</p><p><strong>Results: </strong>Our analysis included six studies encompassing ECG data from 2,179 patients, all employing AI algorithms for ECG interpretation. The quantitative analysis revealed an area under the curve (AUC) of 0.898, a sensitivity of 78.9% (95% CI: 69.6 to 85.9), and a specificity of 87.7% (95% CI: 79.9 to 92.7). Notably, the sensitivity analysis without Zanchi et al., significantly reduced the heterogeneity (I<sup>2</sup> = 0%). However, the other analyses corroborated with our general findings.</p><p><strong>Conclusion: </strong>AI-driven ECG interpretation demonstrates to be a viable option in detecting BrS.</p>\",\"PeriodicalId\":520675,\"journal\":{\"name\":\"Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10840-025-02075-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10840-025-02075-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:Brugada综合征(BrS)是一种在其他方面健康的个体中与心源性猝死相关的严重疾病。值得注意的是,药物引起的BrS占所有记录病例的50%至70%。人工智能(AI)模型在心电图(ECGs)分析中的应用代表了一种很有前途的检测BrS的方法。目的:本荟萃分析旨在评价人工智能模型通过心电图分析诊断BrS的有效性。方法:我们在PubMed、Embase和Cochrane数据库中进行了系统搜索,重点关注与BrS检测相关的基于人工智能的ECG分析模型。测量的主要结果包括敏感性、特异性和总受试者工作特征(SROC)曲线。采用95%置信区间(ci)的随机效应模型计算合并比例,采用Zhou和Dendukuri I2方法分析异质性。此外,进行留一敏感性分析,以评估每一项纳入研究对合并结果和异质性的影响。所有统计分析均采用R版本4.4.2进行。结果:我们的分析纳入了6项研究,涵盖了2179名患者的心电图数据,所有研究都采用了人工智能算法进行心电图解读。定量分析显示曲线下面积(AUC)为0.898,敏感性为78.9% (95% CI: 69.6 ~ 85.9),特异性为87.7% (95% CI: 79.9 ~ 92.7)。值得注意的是,没有Zanchi等人的敏感性分析显著降低了异质性(I2 = 0%)。然而,其他分析证实了我们的总体发现。结论:人工智能驱动的心电判读是检测BrS的可行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic review and meta-analysis of artificial intelligence ECGs performance in the diagnosis of Brugada Syndrome.

Background: Brugada syndrome (BrS) is a serious condition linked to sudden cardiac death in individuals who are otherwise healthy. Notably, drug-induced BrS accounts for 50% to 70% of all documented cases. The utilization of artificial intelligence (AI) models in the analysis of electrocardiograms (ECGs) represents a promising approach for the detection of BrS.

Purpose: This meta-analysis aims to evaluate the effectiveness of AI models in diagnosing BrS through ECG analysis.

Methods: We conducted a systematic search across PubMed, Embase, and Cochrane databases, focusing on AI-based models for ECG analysis related to BrS detection. Key outcomes measured included sensitivity, specificity, and the summary receiver operating characteristic (SROC) curve. Pooled proportions were calculated using a random-effects model with 95% confidence intervals (CIs), and heterogeneity was using Zhou and Dendukuri I2 approach. Additionally, a leave-one-out sensitivity analysis was performed to evaluate the impact of each one of the included studies on the pooled results and heterogeneity. All statistical analyses were conducted using R version 4.4.2.

Results: Our analysis included six studies encompassing ECG data from 2,179 patients, all employing AI algorithms for ECG interpretation. The quantitative analysis revealed an area under the curve (AUC) of 0.898, a sensitivity of 78.9% (95% CI: 69.6 to 85.9), and a specificity of 87.7% (95% CI: 79.9 to 92.7). Notably, the sensitivity analysis without Zanchi et al., significantly reduced the heterogeneity (I2 = 0%). However, the other analyses corroborated with our general findings.

Conclusion: AI-driven ECG interpretation demonstrates to be a viable option in detecting BrS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信