高分辨率层流记录揭示了猴子V1的结构功能关系。

Nicole Carr, Shude Zhu, Xiaomo Chen, Kenji Lee, Alec Perliss, Tirin Moore, Chandramouli Chandrasekaran
{"title":"高分辨率层流记录揭示了猴子V1的结构功能关系。","authors":"Nicole Carr, Shude Zhu, Xiaomo Chen, Kenji Lee, Alec Perliss, Tirin Moore, Chandramouli Chandrasekaran","doi":"10.1101/2025.05.14.653875","DOIUrl":null,"url":null,"abstract":"<p><p>The relationship between structural properties of diverse neuronal populations in monkey primary visual cortex (V1) and their <i>in vivo</i> functional responses is not fully understood. We combined high-density Neuropixels recordings across cortical layers of macaque V1 with non-linear dimensionality reduction on waveform shape to delineate nine putative cell classes: 4 narrow-spiking (NS), 4 broad-spiking (BS) and 1 tri-phasic (TP). Using targeted analyses of laminar organization, spike amplitude, multichannel waveforms, functional properties, and network connectivity of these cell classes, we demonstrate four aspects of the V1 microcircuit predicted by anatomical studies but never fully demonstrated <i>in vivo</i> . First, NS neurons were concentrated in layer 4. Second, a large-amplitude NS cell class in layer 4B showed strong direction selectivity. Third, another layer 4B NS class exhibited robust bursting and orientation selectivity. Finally, cross-correlation analysis revealed functional interactions between cells in different layers. Our results highlight how high-resolution electrophysiology can reveal novel relationships between <i>in vivo</i> function of neurons and the underlying circuit.</p><p><strong>Teaser: </strong>High-resolution electrophysiology used with machine learning reveals links between function and the underlying neural circuitry.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132580/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuropixels reveal structure-function relationships in monkey V1 <i>in vivo</i>.\",\"authors\":\"Nicole Carr, Shude Zhu, Xiaomo Chen, Kenji Lee, Alec Perliss, Tirin Moore, Chandramouli Chandrasekaran\",\"doi\":\"10.1101/2025.05.14.653875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The relationship between structural properties of diverse neuronal populations in monkey primary visual cortex (V1) and their <i>in vivo</i> functional responses is not fully understood. We combined high-density Neuropixels recordings across cortical layers of macaque V1 with non-linear dimensionality reduction on waveform shape to delineate nine putative cell classes: 4 narrow-spiking (NS), 4 broad-spiking (BS) and 1 tri-phasic (TP). Using targeted analyses of laminar organization, spike amplitude, multichannel waveforms, functional properties, and network connectivity of these cell classes, we demonstrate four aspects of the V1 microcircuit predicted by anatomical studies but never fully demonstrated <i>in vivo</i> . First, NS neurons were concentrated in layer 4. Second, a large-amplitude NS cell class in layer 4B showed strong direction selectivity. Third, another layer 4B NS class exhibited robust bursting and orientation selectivity. Finally, cross-correlation analysis revealed functional interactions between cells in different layers. Our results highlight how high-resolution electrophysiology can reveal novel relationships between <i>in vivo</i> function of neurons and the underlying circuit.</p><p><strong>Teaser: </strong>High-resolution electrophysiology used with machine learning reveals links between function and the underlying neural circuitry.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132580/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.05.14.653875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.05.14.653875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

猕猴初级视觉皮层(V1)不同神经元群的结构特性与它们在体内的功能性视觉加工之间的关系一直是视觉神经科学领域的一个重要知识缺口。我们利用高密度神经像素电极记录了猕猴V1神经元层的大量神经元,并使用最先进的非线性降维方法对波形形状进行了描述,描绘了9种假定的细胞类别,4种窄峰(NS), 4种宽峰(BS)和1种三相(TP)。然后,我们对这些细胞类别的层流组织、尖峰幅度、多通道空间特征、功能特性和网络连通性进行了有针对性的分析,以发现解剖研究预测的V1微电路的四个基本方面,但在体内从未得到充分证明:首先,NS神经元最集中在第4层,且数量多于细小蛋白阳性神经元,这与V1兴奋性神经元中钾通道表达的研究一致。其次,第4B层的大振幅NS细胞具有很强的方向选择性,其多通道波形与星状形态一致,这可能与神经元在V1和MT之间投射的解剖描述的功能相关。第三,第4B层的NS细胞具有强大的破裂活性和很强的方向选择性。最后,神经元对的互相关分析揭示了细胞类别之间不同的功能相互作用。这些结果表明,高分辨率电生理学能够发现神经元结构组织和体内功能反应之间的新关系,并可以为灵长类V1的生物现实微电路模型提供信息,甚至可能扩展到所有新皮层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuropixels reveal structure-function relationships in monkey V1 in vivo.

The relationship between structural properties of diverse neuronal populations in monkey primary visual cortex (V1) and their in vivo functional responses is not fully understood. We combined high-density Neuropixels recordings across cortical layers of macaque V1 with non-linear dimensionality reduction on waveform shape to delineate nine putative cell classes: 4 narrow-spiking (NS), 4 broad-spiking (BS) and 1 tri-phasic (TP). Using targeted analyses of laminar organization, spike amplitude, multichannel waveforms, functional properties, and network connectivity of these cell classes, we demonstrate four aspects of the V1 microcircuit predicted by anatomical studies but never fully demonstrated in vivo . First, NS neurons were concentrated in layer 4. Second, a large-amplitude NS cell class in layer 4B showed strong direction selectivity. Third, another layer 4B NS class exhibited robust bursting and orientation selectivity. Finally, cross-correlation analysis revealed functional interactions between cells in different layers. Our results highlight how high-resolution electrophysiology can reveal novel relationships between in vivo function of neurons and the underlying circuit.

Teaser: High-resolution electrophysiology used with machine learning reveals links between function and the underlying neural circuitry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信