数字乳房x线摄影中乳头分割的一种新的深度学习框架。

Marcos Rogozinski, Jan Hurtado, Cesar A Sierra-Franco, Carlos R Hall Barbosa, Alberto Raposo
{"title":"数字乳房x线摄影中乳头分割的一种新的深度学习框架。","authors":"Marcos Rogozinski, Jan Hurtado, Cesar A Sierra-Franco, Carlos R Hall Barbosa, Alberto Raposo","doi":"10.1007/s10278-025-01567-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel methodology to enhance nipple segmentation in digital mammography, a critical component for accurate medical analysis and computer-aided detection systems. The nipple is a key anatomical landmark for multi-view and multi-modality breast image registration, where accurate localization is vital for ensuring image quality and enabling precise registration of anomalies across different mammographic views. The proposed approach significantly outperforms baseline methods, particularly in challenging cases where previous techniques failed. It achieved successful detection across all cases and reached a mean Intersection over Union (mIoU) of 0.63 in instances where the baseline failed entirely. Additionally, it yielded nearly a tenfold improvement in Hausdorff distance and consistent gains in overlap-based metrics, with the mIoU increasing from 0.7408 to 0.8011 in the craniocaudal (CC) view and from 0.7488 to 0.7767 in the mediolateral oblique (MLO) view. Furthermore, its generalizability suggests the potential for application to other breast imaging modalities and related domains facing challenges such as class imbalance and high variability in object characteristics.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Deep Learning Framework for Nipple Segmentation in Digital Mammography.\",\"authors\":\"Marcos Rogozinski, Jan Hurtado, Cesar A Sierra-Franco, Carlos R Hall Barbosa, Alberto Raposo\",\"doi\":\"10.1007/s10278-025-01567-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces a novel methodology to enhance nipple segmentation in digital mammography, a critical component for accurate medical analysis and computer-aided detection systems. The nipple is a key anatomical landmark for multi-view and multi-modality breast image registration, where accurate localization is vital for ensuring image quality and enabling precise registration of anomalies across different mammographic views. The proposed approach significantly outperforms baseline methods, particularly in challenging cases where previous techniques failed. It achieved successful detection across all cases and reached a mean Intersection over Union (mIoU) of 0.63 in instances where the baseline failed entirely. Additionally, it yielded nearly a tenfold improvement in Hausdorff distance and consistent gains in overlap-based metrics, with the mIoU increasing from 0.7408 to 0.8011 in the craniocaudal (CC) view and from 0.7488 to 0.7767 in the mediolateral oblique (MLO) view. Furthermore, its generalizability suggests the potential for application to other breast imaging modalities and related domains facing challenges such as class imbalance and high variability in object characteristics.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01567-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01567-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种新的方法,以加强乳头分割的数字乳房x光摄影,一个重要的组成部分,准确的医学分析和计算机辅助检测系统。乳头是多视图和多模态乳房图像配准的关键解剖标志,其中精确定位对于确保图像质量和在不同乳房x线摄影视图中精确配准异常至关重要。提出的方法明显优于基线方法,特别是在以前的技术失败的具有挑战性的情况下。它在所有情况下都实现了成功的检测,并且在基线完全失败的情况下达到了0.63的平均交联(mIoU)。此外,它在Hausdorff距离方面取得了近10倍的改善,并在基于重叠的指标上取得了一致的收益,颅侧(CC)视图的mIoU从0.7408增加到0.8011,中侧斜(MLO)视图的mIoU从0.7488增加到0.7767。此外,该方法的通用性表明,它有可能应用于其他乳房成像模式和相关领域,这些领域面临着诸如类别不平衡和物体特征的高度可变性等挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Deep Learning Framework for Nipple Segmentation in Digital Mammography.

This study introduces a novel methodology to enhance nipple segmentation in digital mammography, a critical component for accurate medical analysis and computer-aided detection systems. The nipple is a key anatomical landmark for multi-view and multi-modality breast image registration, where accurate localization is vital for ensuring image quality and enabling precise registration of anomalies across different mammographic views. The proposed approach significantly outperforms baseline methods, particularly in challenging cases where previous techniques failed. It achieved successful detection across all cases and reached a mean Intersection over Union (mIoU) of 0.63 in instances where the baseline failed entirely. Additionally, it yielded nearly a tenfold improvement in Hausdorff distance and consistent gains in overlap-based metrics, with the mIoU increasing from 0.7408 to 0.8011 in the craniocaudal (CC) view and from 0.7488 to 0.7767 in the mediolateral oblique (MLO) view. Furthermore, its generalizability suggests the potential for application to other breast imaging modalities and related domains facing challenges such as class imbalance and high variability in object characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信