{"title":"多组学分析揭示了患有自发性2型糖尿病的衰老非人灵长类动物心脏组织代谢紊乱。","authors":"Yaowen Liu, Jingning Yu, Hao Hu, Shaoxia Pu, Haiyan Wu, Yunyu Ma, Wenhui Yang, Chongye Fang, Fei Sun, Haizhen Wang","doi":"10.18632/aging.206261","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The complex interplay between type 2 diabetes (TM) and obesity, particularly in aging populations, is increasingly recognized for its significant contribution to cardiac dysfunction. However, the metabolic changes within cardiac tissues that underlie this relationship remain poorly understood.</p><p><strong>Methods: </strong>We employed a multi-omics approach to investigate the metabolic alterations in cardiac tissues of aging nonhuman primates with spontaneous TM and obesity. Comprehensive analysis was conducted on left ventricular heart tissues from control (CON), obesity (OB), and TM groups, each comprising three aging monkeys. Proteomic data were analyzed using label-free mass spectrometry, and lipidomic profiles were determined using targeted metabolomic assays.</p><p><strong>Results: </strong>Our analysis uncovered significant metabolic perturbations in both the OB and TM groups relative to controls. Notably, the TM group showed alterations in cardiac metal ion metabolic proteins and a disruption in the liver-heart crosstalk, suggesting a derailment in the heart's metabolic support system. This was further exacerbated by reduced levels of short-chain acylcarnitines and lysophosphatidylcholines (lysoPCs), coupled with an increase in C18:2 acylcarnitines. A progressive decline in amino acid levels was observed from the control to OB to TM groups, indicating a stepwise deterioration in cardiac metabolic remodeling.</p><p><strong>Conclusions: </strong>This multi-omics study in aging nonhuman primates provides novel insights into the metabolic dysregulations associated with TM and obesity in cardiac tissues. The observed metabolic changes highlight potential therapeutic targets for prevention or mitigating the cardiac complications of TM.</p>","PeriodicalId":55547,"journal":{"name":"Aging-Us","volume":"17 ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omics analysis reveals metabolic disruptions in cardiac tissues of aging nonhuman primates with spontaneous type 2 diabetes.\",\"authors\":\"Yaowen Liu, Jingning Yu, Hao Hu, Shaoxia Pu, Haiyan Wu, Yunyu Ma, Wenhui Yang, Chongye Fang, Fei Sun, Haizhen Wang\",\"doi\":\"10.18632/aging.206261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The complex interplay between type 2 diabetes (TM) and obesity, particularly in aging populations, is increasingly recognized for its significant contribution to cardiac dysfunction. However, the metabolic changes within cardiac tissues that underlie this relationship remain poorly understood.</p><p><strong>Methods: </strong>We employed a multi-omics approach to investigate the metabolic alterations in cardiac tissues of aging nonhuman primates with spontaneous TM and obesity. Comprehensive analysis was conducted on left ventricular heart tissues from control (CON), obesity (OB), and TM groups, each comprising three aging monkeys. Proteomic data were analyzed using label-free mass spectrometry, and lipidomic profiles were determined using targeted metabolomic assays.</p><p><strong>Results: </strong>Our analysis uncovered significant metabolic perturbations in both the OB and TM groups relative to controls. Notably, the TM group showed alterations in cardiac metal ion metabolic proteins and a disruption in the liver-heart crosstalk, suggesting a derailment in the heart's metabolic support system. This was further exacerbated by reduced levels of short-chain acylcarnitines and lysophosphatidylcholines (lysoPCs), coupled with an increase in C18:2 acylcarnitines. A progressive decline in amino acid levels was observed from the control to OB to TM groups, indicating a stepwise deterioration in cardiac metabolic remodeling.</p><p><strong>Conclusions: </strong>This multi-omics study in aging nonhuman primates provides novel insights into the metabolic dysregulations associated with TM and obesity in cardiac tissues. The observed metabolic changes highlight potential therapeutic targets for prevention or mitigating the cardiac complications of TM.</p>\",\"PeriodicalId\":55547,\"journal\":{\"name\":\"Aging-Us\",\"volume\":\"17 \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging-Us\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.18632/aging.206261\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging-Us","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18632/aging.206261","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Multi-omics analysis reveals metabolic disruptions in cardiac tissues of aging nonhuman primates with spontaneous type 2 diabetes.
Background: The complex interplay between type 2 diabetes (TM) and obesity, particularly in aging populations, is increasingly recognized for its significant contribution to cardiac dysfunction. However, the metabolic changes within cardiac tissues that underlie this relationship remain poorly understood.
Methods: We employed a multi-omics approach to investigate the metabolic alterations in cardiac tissues of aging nonhuman primates with spontaneous TM and obesity. Comprehensive analysis was conducted on left ventricular heart tissues from control (CON), obesity (OB), and TM groups, each comprising three aging monkeys. Proteomic data were analyzed using label-free mass spectrometry, and lipidomic profiles were determined using targeted metabolomic assays.
Results: Our analysis uncovered significant metabolic perturbations in both the OB and TM groups relative to controls. Notably, the TM group showed alterations in cardiac metal ion metabolic proteins and a disruption in the liver-heart crosstalk, suggesting a derailment in the heart's metabolic support system. This was further exacerbated by reduced levels of short-chain acylcarnitines and lysophosphatidylcholines (lysoPCs), coupled with an increase in C18:2 acylcarnitines. A progressive decline in amino acid levels was observed from the control to OB to TM groups, indicating a stepwise deterioration in cardiac metabolic remodeling.
Conclusions: This multi-omics study in aging nonhuman primates provides novel insights into the metabolic dysregulations associated with TM and obesity in cardiac tissues. The observed metabolic changes highlight potential therapeutic targets for prevention or mitigating the cardiac complications of TM.