将数字足迹数据与纵向人口研究联系起来。

IF 1.6 Q3 HEALTH CARE SCIENCES & SERVICES
International Journal of Population Data Science Pub Date : 2025-06-03 eCollection Date: 2025-01-01 DOI:10.23889/ijpds.v10i1.2946
Romana Burgess, Andy Boyd, Oliver Sp Davis, Louise Ac Millard, Mark Mumme, Sarah Robertson, Andy Skinner, Zhuoni Xiao, Anya Skatova
{"title":"将数字足迹数据与纵向人口研究联系起来。","authors":"Romana Burgess, Andy Boyd, Oliver Sp Davis, Louise Ac Millard, Mark Mumme, Sarah Robertson, Andy Skinner, Zhuoni Xiao, Anya Skatova","doi":"10.23889/ijpds.v10i1.2946","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Linking digital footprint data into longitudinal population studies (LPS) presents an opportunity to enrich our understanding of how digitally captured behaviours relate to health traits and disease. However, this linkage introduces significant methodological challenges that require systematic exploration.</p><p><strong>Objectives: </strong>To develop a robust framework for successful digital footprint linkage into LPS, informed by discussions from a workshop from the Digital Footprints Conference 2024.</p><p><strong>Methods: </strong>We propose a structured, four-stage framework to facilitate successful linkage of digital footprint data into LPS: (1) understand participant expectations and acceptability; (2) collect and link the data; (3) evaluate properties of the data; and (4) ensure secure and ethical access for research. This framework addresses the key methodological challenges identified at each stage, discussed through the lens of two LPS case studies: the Avon Longitudinal Study of Parents and Children and Generation Scotland.</p><p><strong>Results: </strong>Key methodological challenges identified include privacy and confidentiality concerns, reliance on third-party platforms, data quality issues like missing data and measurement error. We also emphasize the role of trusted research environments and synthetic datasets in enabling secure, privacy-sensitive data sharing for research.</p><p><strong>Conclusions: </strong>While the linkage digital footprint data to LPS remains in early stages, our framework provides a methodological foundation for overcoming current challenges. Through iterative refinement of these methods there is significant potential to advance population-level insights into health and wellbeing.</p>","PeriodicalId":36483,"journal":{"name":"International Journal of Population Data Science","volume":"10 1","pages":"2946"},"PeriodicalIF":1.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132027/pdf/","citationCount":"0","resultStr":"{\"title\":\"Linking digital footprint data into longitudinal population studies.\",\"authors\":\"Romana Burgess, Andy Boyd, Oliver Sp Davis, Louise Ac Millard, Mark Mumme, Sarah Robertson, Andy Skinner, Zhuoni Xiao, Anya Skatova\",\"doi\":\"10.23889/ijpds.v10i1.2946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Linking digital footprint data into longitudinal population studies (LPS) presents an opportunity to enrich our understanding of how digitally captured behaviours relate to health traits and disease. However, this linkage introduces significant methodological challenges that require systematic exploration.</p><p><strong>Objectives: </strong>To develop a robust framework for successful digital footprint linkage into LPS, informed by discussions from a workshop from the Digital Footprints Conference 2024.</p><p><strong>Methods: </strong>We propose a structured, four-stage framework to facilitate successful linkage of digital footprint data into LPS: (1) understand participant expectations and acceptability; (2) collect and link the data; (3) evaluate properties of the data; and (4) ensure secure and ethical access for research. This framework addresses the key methodological challenges identified at each stage, discussed through the lens of two LPS case studies: the Avon Longitudinal Study of Parents and Children and Generation Scotland.</p><p><strong>Results: </strong>Key methodological challenges identified include privacy and confidentiality concerns, reliance on third-party platforms, data quality issues like missing data and measurement error. We also emphasize the role of trusted research environments and synthetic datasets in enabling secure, privacy-sensitive data sharing for research.</p><p><strong>Conclusions: </strong>While the linkage digital footprint data to LPS remains in early stages, our framework provides a methodological foundation for overcoming current challenges. Through iterative refinement of these methods there is significant potential to advance population-level insights into health and wellbeing.</p>\",\"PeriodicalId\":36483,\"journal\":{\"name\":\"International Journal of Population Data Science\",\"volume\":\"10 1\",\"pages\":\"2946\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Population Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23889/ijpds.v10i1.2946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Population Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23889/ijpds.v10i1.2946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

背景:将数字足迹数据与纵向人口研究(LPS)联系起来,为丰富我们对数字捕获的行为与健康特征和疾病之间的关系的理解提供了机会。然而,这种联系带来了需要系统探索的重大方法论挑战。目标:通过2024年数字足迹会议研讨会的讨论,为成功地将数字足迹链接到LPS开发一个强大的框架。方法:我们提出了一个结构化的四阶段框架,以促进数字足迹数据与LPS的成功联系:(1)了解参与者的期望和可接受性;(2)收集和链接数据;(3)评估数据的属性;(4)确保安全、符合伦理的研究获取途径。该框架解决了在每个阶段确定的关键方法挑战,并通过两个LPS案例研究进行了讨论:雅芳父母与儿童纵向研究和苏格兰一代。结果:确定的主要方法挑战包括隐私和保密问题,对第三方平台的依赖,数据丢失和测量误差等数据质量问题。我们还强调了可信的研究环境和合成数据集在实现安全、隐私敏感的研究数据共享中的作用。结论:虽然数字足迹数据与LPS的联系仍处于早期阶段,但我们的框架为克服当前的挑战提供了方法论基础。通过对这些方法的不断改进,有很大的潜力推进人口层面对健康和福祉的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linking digital footprint data into longitudinal population studies.

Background: Linking digital footprint data into longitudinal population studies (LPS) presents an opportunity to enrich our understanding of how digitally captured behaviours relate to health traits and disease. However, this linkage introduces significant methodological challenges that require systematic exploration.

Objectives: To develop a robust framework for successful digital footprint linkage into LPS, informed by discussions from a workshop from the Digital Footprints Conference 2024.

Methods: We propose a structured, four-stage framework to facilitate successful linkage of digital footprint data into LPS: (1) understand participant expectations and acceptability; (2) collect and link the data; (3) evaluate properties of the data; and (4) ensure secure and ethical access for research. This framework addresses the key methodological challenges identified at each stage, discussed through the lens of two LPS case studies: the Avon Longitudinal Study of Parents and Children and Generation Scotland.

Results: Key methodological challenges identified include privacy and confidentiality concerns, reliance on third-party platforms, data quality issues like missing data and measurement error. We also emphasize the role of trusted research environments and synthetic datasets in enabling secure, privacy-sensitive data sharing for research.

Conclusions: While the linkage digital footprint data to LPS remains in early stages, our framework provides a methodological foundation for overcoming current challenges. Through iterative refinement of these methods there is significant potential to advance population-level insights into health and wellbeing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
386
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信