{"title":"lncRNA-Gm26793基因组位点与Cubn形成染色体间相互作用,确保干细胞在体外和体内的正常分化。","authors":"Zhiwen Liu, Xin Wan, Jiehui Chen, Yongjian Ma, Yonggao Fu, Yingying Chen, Mingzhu Wen, Yun Yang, Yun Qian, Yong Zhang, Dahai Zhu, Jinsong Li, Naihe Jing, Xianfa Yang","doi":"10.1038/s41421-025-00805-0","DOIUrl":null,"url":null,"abstract":"<p><p>Inter-chromosomal interactions play a crucial role in 3D genome organization, yet the organizational principles and functional significances remain elusive. In general, lncRNA loci and transcripts are frequently associated with transcriptional programs modulated by long-range chromatin interactions. Here, we identified a novel lncRNA named Gm26793, which is abundantly distributed in the primitive streak and mesodermal cells of embryonic day 7.5 mouse gastrula. Through genetic ablation of Gm26793, we observed a preferential responsiveness to primitive endoderm lineage during stem cell differentiation, as well as enhanced occurrence of transient and degenerative state cells in early mouse embryos when the cell fate segregates between epiblast and primitive endoderm. Mechanistically, we revealed that the genomic locus of Gm26793, rather than the lncRNA transcript or adjacent gene, governs the cell fate preference towards primitive endoderm. Concretely, Gm26793 locus (Chromosome 7) forms an inter-chromosomal molecular lock with Cubn (Chromosome 2) via CTCF, restraining the expression of Cubn and maintaining a natural epigenetic landscape, thus ensuring the proper lineage specification in vitro and in vivo. Overall, our study provides a clear paradigm that inter-chromosomal interaction collaborates with architectural factors to stabilize nuclear conformation and guarantee faithful gene expression during stem cell differentiation and mammalian embryogenesis.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"53"},"PeriodicalIF":13.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134126/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic locus of lncRNA-Gm26793 forms an inter-chromosomal interaction with Cubn to ensure proper stem cell differentiation in vitro and in vivo.\",\"authors\":\"Zhiwen Liu, Xin Wan, Jiehui Chen, Yongjian Ma, Yonggao Fu, Yingying Chen, Mingzhu Wen, Yun Yang, Yun Qian, Yong Zhang, Dahai Zhu, Jinsong Li, Naihe Jing, Xianfa Yang\",\"doi\":\"10.1038/s41421-025-00805-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inter-chromosomal interactions play a crucial role in 3D genome organization, yet the organizational principles and functional significances remain elusive. In general, lncRNA loci and transcripts are frequently associated with transcriptional programs modulated by long-range chromatin interactions. Here, we identified a novel lncRNA named Gm26793, which is abundantly distributed in the primitive streak and mesodermal cells of embryonic day 7.5 mouse gastrula. Through genetic ablation of Gm26793, we observed a preferential responsiveness to primitive endoderm lineage during stem cell differentiation, as well as enhanced occurrence of transient and degenerative state cells in early mouse embryos when the cell fate segregates between epiblast and primitive endoderm. Mechanistically, we revealed that the genomic locus of Gm26793, rather than the lncRNA transcript or adjacent gene, governs the cell fate preference towards primitive endoderm. Concretely, Gm26793 locus (Chromosome 7) forms an inter-chromosomal molecular lock with Cubn (Chromosome 2) via CTCF, restraining the expression of Cubn and maintaining a natural epigenetic landscape, thus ensuring the proper lineage specification in vitro and in vivo. Overall, our study provides a clear paradigm that inter-chromosomal interaction collaborates with architectural factors to stabilize nuclear conformation and guarantee faithful gene expression during stem cell differentiation and mammalian embryogenesis.</p>\",\"PeriodicalId\":9674,\"journal\":{\"name\":\"Cell Discovery\",\"volume\":\"11 1\",\"pages\":\"53\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41421-025-00805-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-025-00805-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Genomic locus of lncRNA-Gm26793 forms an inter-chromosomal interaction with Cubn to ensure proper stem cell differentiation in vitro and in vivo.
Inter-chromosomal interactions play a crucial role in 3D genome organization, yet the organizational principles and functional significances remain elusive. In general, lncRNA loci and transcripts are frequently associated with transcriptional programs modulated by long-range chromatin interactions. Here, we identified a novel lncRNA named Gm26793, which is abundantly distributed in the primitive streak and mesodermal cells of embryonic day 7.5 mouse gastrula. Through genetic ablation of Gm26793, we observed a preferential responsiveness to primitive endoderm lineage during stem cell differentiation, as well as enhanced occurrence of transient and degenerative state cells in early mouse embryos when the cell fate segregates between epiblast and primitive endoderm. Mechanistically, we revealed that the genomic locus of Gm26793, rather than the lncRNA transcript or adjacent gene, governs the cell fate preference towards primitive endoderm. Concretely, Gm26793 locus (Chromosome 7) forms an inter-chromosomal molecular lock with Cubn (Chromosome 2) via CTCF, restraining the expression of Cubn and maintaining a natural epigenetic landscape, thus ensuring the proper lineage specification in vitro and in vivo. Overall, our study provides a clear paradigm that inter-chromosomal interaction collaborates with architectural factors to stabilize nuclear conformation and guarantee faithful gene expression during stem cell differentiation and mammalian embryogenesis.
Cell DiscoveryBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍:
Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research.
Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals.
In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.