利用人工神经网络从红移的21厘米功率谱推断IGM参数

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Madhurima Choudhury, Raghunath Ghara, Saleem Zaroubi, Benedetta Ciardi, Leon V.E. Koopmans, Garrelt Mellema, Abinash Kumar Shaw, Anshuman Acharya, I.T. Iliev, Qing-Bo Ma and Sambit K. Giri
{"title":"利用人工神经网络从红移的21厘米功率谱推断IGM参数","authors":"Madhurima Choudhury, Raghunath Ghara, Saleem Zaroubi, Benedetta Ciardi, Leon V.E. Koopmans, Garrelt Mellema, Abinash Kumar Shaw, Anshuman Acharya, I.T. Iliev, Qing-Bo Ma and Sambit K. Giri","doi":"10.1088/1475-7516/2025/06/003","DOIUrl":null,"url":null,"abstract":"The high redshift 21-cm signal promises to be a crucial probe of the state of the intergalactic medium (IGM). Understanding the connection between the observed 21-cm power spectrum and the physical quantities intricately associated with the IGM is crucial to fully understand the evolution of our Universe. In this study, we develop an emulator using artificial neural network (ANN) to predict the 21-cm power spectrum from a given set of IGM properties, namely, the bubble size distribution and the volume averaged ionization fraction. This emulator is implemented within a standard Bayesian framework to constrain the IGM parameters from a given 21-cm power spectrum. We compare the performance of the Bayesian method to an alternate method using ANN to predict the IGM parameters from a given input power spectrum, and find that both methods yield similar levels of accuracy, while the ANN is significantly faster. We also use this ANN method of parameter estimation to predict the IGM parameters from a test set contaminated with noise levels expected from the SKA-LOW instrument after 1000 hours of observation. Finally, we train a separate ANN to predict the source parameters from the IGM parameters directly, at a redshift of z = 9.1, demonstrating the possibility of a non-analytic inference of the source parameters from the IGM parameters for the first time. We achieve high accuracies, with R2-scores ranging between 0.898–0.978 for the ANN emulator and between 0.966–0.986 and 0.817–0.981 for the predictions of IGM parameters from 21-cm power spectrum and source parameters from IGM parameters, respectively. The predictions of the IGM parameters from the Bayesian method incorporating the ANN emulator leads to tight constraints on the IGM parameters.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"20 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring IGM parameters from the redshifted 21-cm power spectrum using Artificial Neural Networks\",\"authors\":\"Madhurima Choudhury, Raghunath Ghara, Saleem Zaroubi, Benedetta Ciardi, Leon V.E. Koopmans, Garrelt Mellema, Abinash Kumar Shaw, Anshuman Acharya, I.T. Iliev, Qing-Bo Ma and Sambit K. Giri\",\"doi\":\"10.1088/1475-7516/2025/06/003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high redshift 21-cm signal promises to be a crucial probe of the state of the intergalactic medium (IGM). Understanding the connection between the observed 21-cm power spectrum and the physical quantities intricately associated with the IGM is crucial to fully understand the evolution of our Universe. In this study, we develop an emulator using artificial neural network (ANN) to predict the 21-cm power spectrum from a given set of IGM properties, namely, the bubble size distribution and the volume averaged ionization fraction. This emulator is implemented within a standard Bayesian framework to constrain the IGM parameters from a given 21-cm power spectrum. We compare the performance of the Bayesian method to an alternate method using ANN to predict the IGM parameters from a given input power spectrum, and find that both methods yield similar levels of accuracy, while the ANN is significantly faster. We also use this ANN method of parameter estimation to predict the IGM parameters from a test set contaminated with noise levels expected from the SKA-LOW instrument after 1000 hours of observation. Finally, we train a separate ANN to predict the source parameters from the IGM parameters directly, at a redshift of z = 9.1, demonstrating the possibility of a non-analytic inference of the source parameters from the IGM parameters for the first time. We achieve high accuracies, with R2-scores ranging between 0.898–0.978 for the ANN emulator and between 0.966–0.986 and 0.817–0.981 for the predictions of IGM parameters from 21-cm power spectrum and source parameters from IGM parameters, respectively. The predictions of the IGM parameters from the Bayesian method incorporating the ANN emulator leads to tight constraints on the IGM parameters.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/06/003\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/06/003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

高红移21厘米的信号有望成为星系间介质(IGM)状态的关键探测。了解观测到的21厘米功率谱与与IGM复杂相关的物理量之间的联系,对于充分理解我们宇宙的演化至关重要。在这项研究中,我们开发了一个仿真器,利用人工神经网络(ANN)从给定的一组IGM性质,即气泡大小分布和体积平均电离分数,来预测21厘米的功率谱。该仿真器在标准贝叶斯框架内实现,以约束给定21厘米功率谱的IGM参数。我们将贝叶斯方法的性能与使用人工神经网络从给定输入功率谱预测IGM参数的替代方法进行了比较,发现两种方法的精度水平相似,而人工神经网络的速度要快得多。我们还使用这种参数估计的人工神经网络方法来预测受SKA-LOW仪器在1000小时观测后预期噪声水平污染的测试集的IGM参数。最后,我们训练了一个单独的人工神经网络,在红移z = 9.1的情况下直接从IGM参数预测源参数,首次证明了从IGM参数非解析推断源参数的可能性。我们获得了很高的精度,ANN仿真器的r2得分在0.898-0.978之间,从21厘米功率谱预测IGM参数的r2得分在0.966-0.986之间,从IGM参数预测源参数的r2得分在0.817-0.981之间。结合人工神经网络仿真器的贝叶斯方法对IGM参数的预测导致对IGM参数的严格约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring IGM parameters from the redshifted 21-cm power spectrum using Artificial Neural Networks
The high redshift 21-cm signal promises to be a crucial probe of the state of the intergalactic medium (IGM). Understanding the connection between the observed 21-cm power spectrum and the physical quantities intricately associated with the IGM is crucial to fully understand the evolution of our Universe. In this study, we develop an emulator using artificial neural network (ANN) to predict the 21-cm power spectrum from a given set of IGM properties, namely, the bubble size distribution and the volume averaged ionization fraction. This emulator is implemented within a standard Bayesian framework to constrain the IGM parameters from a given 21-cm power spectrum. We compare the performance of the Bayesian method to an alternate method using ANN to predict the IGM parameters from a given input power spectrum, and find that both methods yield similar levels of accuracy, while the ANN is significantly faster. We also use this ANN method of parameter estimation to predict the IGM parameters from a test set contaminated with noise levels expected from the SKA-LOW instrument after 1000 hours of observation. Finally, we train a separate ANN to predict the source parameters from the IGM parameters directly, at a redshift of z = 9.1, demonstrating the possibility of a non-analytic inference of the source parameters from the IGM parameters for the first time. We achieve high accuracies, with R2-scores ranging between 0.898–0.978 for the ANN emulator and between 0.966–0.986 and 0.817–0.981 for the predictions of IGM parameters from 21-cm power spectrum and source parameters from IGM parameters, respectively. The predictions of the IGM parameters from the Bayesian method incorporating the ANN emulator leads to tight constraints on the IGM parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信