Qiuying Dai, Zhengwei Cai, Chaoxin Yang, Zixiao Li, Shengjun Sun, Meng Yue, Xiaolan Tang, Xun He, Yujie Yuan, Hong Tang, Yongchao Yao, Dongdong Zheng, Yongsong Luo, Mohamed S. Hamdy, Fatma A. Ibrahim, Tingshuai Li, Xuping Sun and Bo Tang
{"title":"六氟锑酸盐插层NiFe层状双氢氧化物使碱性海水在安培电流密度下稳定氧化","authors":"Qiuying Dai, Zhengwei Cai, Chaoxin Yang, Zixiao Li, Shengjun Sun, Meng Yue, Xiaolan Tang, Xun He, Yujie Yuan, Hong Tang, Yongchao Yao, Dongdong Zheng, Yongsong Luo, Mohamed S. Hamdy, Fatma A. Ibrahim, Tingshuai Li, Xuping Sun and Bo Tang","doi":"10.1039/D4QI02892A","DOIUrl":null,"url":null,"abstract":"<p >Renewable electricity-driven seawater electrolysis for hydrogen production offers substantial potential for sustainable energy solutions. However, the high concentration of chloride ions (Cl<small><sup>−</sup></small>) in seawater triggers competitive chemical reactions and severe corrosion, posing a challenge to the durability of the anode. In this study, we present a hexafluoroantimonate-intercalated NiFe layered double hydroxide nanosheet array on Ni foam (SbF<small><sub>6</sub></small><small><sup>−</sup></small>-NiFe LDH/NF), which serves as a highly active and stable electrocatalyst for alkaline seawater oxidation (ASO). SbF<small><sub>6</sub></small><small><sup>−</sup></small>-NiFe LDH/NF requires only an overpotential of 379 mV to achieve a current density of 1000 mA cm<small><sup>−2</sup></small>, significantly outperforming NiFe LDH/NF (396 mV). Furthermore, it exhibits excellent long-term stability over 600 hours at 1000 mA cm<small><sup>−2</sup></small>, with only trace amounts of active chlorine detected during the ASO process. <em>In situ</em> Raman spectroscopy confirms that the insertion of SbF<small><sub>6</sub></small><small><sup>−</sup></small> into the LDH layers promotes the formation of active sites. More importantly, SbF<small><sub>6</sub></small><small><sup>−</sup></small> efficiently repels Cl<small><sup>−</sup></small>, thus providing robust protection to the anode. This development represents a significant advancement in the design of noble-metal-free, durable anode electrodes for ASO.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 20","pages":" 6132-6138"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexafluoroantimonate-intercalated NiFe layered double hydroxide enables stable alkaline seawater oxidation at ampere-level current densities†\",\"authors\":\"Qiuying Dai, Zhengwei Cai, Chaoxin Yang, Zixiao Li, Shengjun Sun, Meng Yue, Xiaolan Tang, Xun He, Yujie Yuan, Hong Tang, Yongchao Yao, Dongdong Zheng, Yongsong Luo, Mohamed S. Hamdy, Fatma A. Ibrahim, Tingshuai Li, Xuping Sun and Bo Tang\",\"doi\":\"10.1039/D4QI02892A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Renewable electricity-driven seawater electrolysis for hydrogen production offers substantial potential for sustainable energy solutions. However, the high concentration of chloride ions (Cl<small><sup>−</sup></small>) in seawater triggers competitive chemical reactions and severe corrosion, posing a challenge to the durability of the anode. In this study, we present a hexafluoroantimonate-intercalated NiFe layered double hydroxide nanosheet array on Ni foam (SbF<small><sub>6</sub></small><small><sup>−</sup></small>-NiFe LDH/NF), which serves as a highly active and stable electrocatalyst for alkaline seawater oxidation (ASO). SbF<small><sub>6</sub></small><small><sup>−</sup></small>-NiFe LDH/NF requires only an overpotential of 379 mV to achieve a current density of 1000 mA cm<small><sup>−2</sup></small>, significantly outperforming NiFe LDH/NF (396 mV). Furthermore, it exhibits excellent long-term stability over 600 hours at 1000 mA cm<small><sup>−2</sup></small>, with only trace amounts of active chlorine detected during the ASO process. <em>In situ</em> Raman spectroscopy confirms that the insertion of SbF<small><sub>6</sub></small><small><sup>−</sup></small> into the LDH layers promotes the formation of active sites. More importantly, SbF<small><sub>6</sub></small><small><sup>−</sup></small> efficiently repels Cl<small><sup>−</sup></small>, thus providing robust protection to the anode. This development represents a significant advancement in the design of noble-metal-free, durable anode electrodes for ASO.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 20\",\"pages\":\" 6132-6138\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d4qi02892a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d4qi02892a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
可再生电力驱动的海水电解制氢为可持续能源解决方案提供了巨大的潜力。然而,海水中高浓度的氯离子(Cl−)会引发竞争性的化学反应和严重的腐蚀,对阳极的耐久性提出了挑战。在本研究中,我们在Ni泡沫(SbF6−-NiFe LDH/NF)上制备了一种六氟锑酸插层NiFe层状双氢氧化物纳米片阵列,作为碱性海水氧化(ASO)的高活性稳定电催化剂。SbF6−-NiFe LDH/NF仅需379 mV过电位即可实现1000 mA cm−2的电流密度,明显优于NiFe LDH/NF (396 mV)。此外,它在1000毫安厘米−2下表现出600小时的长期稳定性,在ASO过程中仅检测到微量的活性氯。原位拉曼光谱证实,SbF6−插入LDH层促进了活性位点的形成。更重要的是,SbF6−有效地排斥Cl−,从而为阳极提供强大的保护。这一发展代表了无贵金属、耐用的ASO阳极电极设计的重大进步。
Hexafluoroantimonate-intercalated NiFe layered double hydroxide enables stable alkaline seawater oxidation at ampere-level current densities†
Renewable electricity-driven seawater electrolysis for hydrogen production offers substantial potential for sustainable energy solutions. However, the high concentration of chloride ions (Cl−) in seawater triggers competitive chemical reactions and severe corrosion, posing a challenge to the durability of the anode. In this study, we present a hexafluoroantimonate-intercalated NiFe layered double hydroxide nanosheet array on Ni foam (SbF6−-NiFe LDH/NF), which serves as a highly active and stable electrocatalyst for alkaline seawater oxidation (ASO). SbF6−-NiFe LDH/NF requires only an overpotential of 379 mV to achieve a current density of 1000 mA cm−2, significantly outperforming NiFe LDH/NF (396 mV). Furthermore, it exhibits excellent long-term stability over 600 hours at 1000 mA cm−2, with only trace amounts of active chlorine detected during the ASO process. In situ Raman spectroscopy confirms that the insertion of SbF6− into the LDH layers promotes the formation of active sites. More importantly, SbF6− efficiently repels Cl−, thus providing robust protection to the anode. This development represents a significant advancement in the design of noble-metal-free, durable anode electrodes for ASO.