多测量向量的无标记压缩感知

IF 5.8 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohamed Akrout;Amine Mezghani;Faouzi Bellili
{"title":"多测量向量的无标记压缩感知","authors":"Mohamed Akrout;Amine Mezghani;Faouzi Bellili","doi":"10.1109/TSP.2025.3575919","DOIUrl":null,"url":null,"abstract":"This paper introduces an algorithmic solution to a broader class of unlabeled sensing problems with multiple measurement vectors (MMV). The goal is to recover an unknown structured signal matrix, <inline-formula><tex-math>$\\boldsymbol{X}$</tex-math></inline-formula>, from its noisy linear observation matrix, <inline-formula><tex-math>$\\boldsymbol{Y}$</tex-math></inline-formula>, whose rows are further randomly shuffled by an unknown permutation matrix <inline-formula><tex-math>$\\boldsymbol{U}$</tex-math></inline-formula>. A new Bayes-optimal unlabeled compressed sensing (UCS) recovery algorithm is developed from the bilinear vector approximate message passing (Bi-VAMP) framework using non-separable and coupled priors on the rows and columns of the permutation matrix <inline-formula><tex-math>$\\boldsymbol{U}$</tex-math></inline-formula>. In particular, standard unlabeled sensing is a special case of the proposed framework, and UCS further generalizes it by neither assuming a partially shuffled signal matrix <inline-formula><tex-math>$\\boldsymbol{X}$</tex-math></inline-formula> nor a small-sized permutation matrix <inline-formula><tex-math>$\\boldsymbol{U}$</tex-math></inline-formula>. For the sake of theoretical performance prediction, we also conduct a state evolution (SE) analysis of the proposed algorithm and show its consistency with the asymptotic empirical mean-squared error (MSE). Numerical results demonstrate the effectiveness of the proposed UCS algorithm and its advantage over state-of-the-art baseline approaches in various applications. We also numerically examine the phase transition diagrams of UCS, thereby characterizing the detectability region as a function of the signal-to-noise ratio (SNR).","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"2768-2786"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlabeled Compressed Sensing From Multiple Measurement Vectors\",\"authors\":\"Mohamed Akrout;Amine Mezghani;Faouzi Bellili\",\"doi\":\"10.1109/TSP.2025.3575919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an algorithmic solution to a broader class of unlabeled sensing problems with multiple measurement vectors (MMV). The goal is to recover an unknown structured signal matrix, <inline-formula><tex-math>$\\\\boldsymbol{X}$</tex-math></inline-formula>, from its noisy linear observation matrix, <inline-formula><tex-math>$\\\\boldsymbol{Y}$</tex-math></inline-formula>, whose rows are further randomly shuffled by an unknown permutation matrix <inline-formula><tex-math>$\\\\boldsymbol{U}$</tex-math></inline-formula>. A new Bayes-optimal unlabeled compressed sensing (UCS) recovery algorithm is developed from the bilinear vector approximate message passing (Bi-VAMP) framework using non-separable and coupled priors on the rows and columns of the permutation matrix <inline-formula><tex-math>$\\\\boldsymbol{U}$</tex-math></inline-formula>. In particular, standard unlabeled sensing is a special case of the proposed framework, and UCS further generalizes it by neither assuming a partially shuffled signal matrix <inline-formula><tex-math>$\\\\boldsymbol{X}$</tex-math></inline-formula> nor a small-sized permutation matrix <inline-formula><tex-math>$\\\\boldsymbol{U}$</tex-math></inline-formula>. For the sake of theoretical performance prediction, we also conduct a state evolution (SE) analysis of the proposed algorithm and show its consistency with the asymptotic empirical mean-squared error (MSE). Numerical results demonstrate the effectiveness of the proposed UCS algorithm and its advantage over state-of-the-art baseline approaches in various applications. We also numerically examine the phase transition diagrams of UCS, thereby characterizing the detectability region as a function of the signal-to-noise ratio (SNR).\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"2768-2786\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11022743/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11022743/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种求解多测量向量(MMV)无标记传感问题的算法。目标是从其嘈杂的线性观测矩阵$\boldsymbol{Y}$中恢复一个未知的结构化信号矩阵$\boldsymbol{X}$,其行被未知的排列矩阵$\boldsymbol{U}$进一步随机洗牌。在双线性向量近似消息传递(Bi-VAMP)框架的基础上,利用置换矩阵$\boldsymbol{U}$的行和列上的不可分离和耦合先验,提出了一种新的贝叶斯最优无标记压缩感知(UCS)恢复算法。特别是,标准无标记感知是所提出框架的特殊情况,UCS进一步推广了它,既不假设部分洗牌的信号矩阵$\boldsymbol{X}$,也不假设小尺寸的排列矩阵$\boldsymbol{U}$。为了理论性能预测,我们还对所提出的算法进行了状态演化(SE)分析,并证明了其与渐近经验均方误差(MSE)的一致性。数值结果证明了所提出的UCS算法的有效性及其在各种应用中优于最先进的基线方法的优势。我们还对UCS的相变图进行了数值研究,从而将可检测区域表征为信噪比(SNR)的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlabeled Compressed Sensing From Multiple Measurement Vectors
This paper introduces an algorithmic solution to a broader class of unlabeled sensing problems with multiple measurement vectors (MMV). The goal is to recover an unknown structured signal matrix, $\boldsymbol{X}$, from its noisy linear observation matrix, $\boldsymbol{Y}$, whose rows are further randomly shuffled by an unknown permutation matrix $\boldsymbol{U}$. A new Bayes-optimal unlabeled compressed sensing (UCS) recovery algorithm is developed from the bilinear vector approximate message passing (Bi-VAMP) framework using non-separable and coupled priors on the rows and columns of the permutation matrix $\boldsymbol{U}$. In particular, standard unlabeled sensing is a special case of the proposed framework, and UCS further generalizes it by neither assuming a partially shuffled signal matrix $\boldsymbol{X}$ nor a small-sized permutation matrix $\boldsymbol{U}$. For the sake of theoretical performance prediction, we also conduct a state evolution (SE) analysis of the proposed algorithm and show its consistency with the asymptotic empirical mean-squared error (MSE). Numerical results demonstrate the effectiveness of the proposed UCS algorithm and its advantage over state-of-the-art baseline approaches in various applications. We also numerically examine the phase transition diagrams of UCS, thereby characterizing the detectability region as a function of the signal-to-noise ratio (SNR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信