文本转sql任务中使用大型语言模型的研究

IF 28 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang, Zhi Yang
{"title":"文本转sql任务中使用大型语言模型的研究","authors":"Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang, Zhi Yang","doi":"10.1145/3737873","DOIUrl":null,"url":null,"abstract":"With the development of the Large Language Models (LLMs), a large range of LLM-based Text-to-SQL(Text2SQL) methods have emerged. This survey provides a comprehensive review of LLM-based Text2SQL studies. We first enumerate classic benchmarks and evaluation metrics. For the two mainstream methods, prompt engineering and finetuning, we introduce a comprehensive taxonomy and offer practical insights into each subcategory. We present an overall analysis of the above methods and various models evaluated on well-known datasets and extract some characteristics. Finally, we discuss the challenges and future directions in this field.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"54 1","pages":""},"PeriodicalIF":28.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey on Employing Large Language Models for Text-to-SQL Tasks\",\"authors\":\"Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang, Zhi Yang\",\"doi\":\"10.1145/3737873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of the Large Language Models (LLMs), a large range of LLM-based Text-to-SQL(Text2SQL) methods have emerged. This survey provides a comprehensive review of LLM-based Text2SQL studies. We first enumerate classic benchmarks and evaluation metrics. For the two mainstream methods, prompt engineering and finetuning, we introduce a comprehensive taxonomy and offer practical insights into each subcategory. We present an overall analysis of the above methods and various models evaluated on well-known datasets and extract some characteristics. Finally, we discuss the challenges and future directions in this field.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":28.0000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3737873\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3737873","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

随着大型语言模型(llm)的发展,出现了一系列基于llm的文本到sql (Text2SQL)方法。本调查提供了基于法学硕士的Text2SQL研究的全面回顾。我们首先列举经典基准和评估指标。对于两种主流方法,快速工程和微调,我们介绍了一个全面的分类,并提供了每个子类别的实际见解。我们对上述方法和各种模型在已知数据集上的评估进行了全面分析,并提取了一些特征。最后,讨论了该领域面临的挑战和未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Employing Large Language Models for Text-to-SQL Tasks
With the development of the Large Language Models (LLMs), a large range of LLM-based Text-to-SQL(Text2SQL) methods have emerged. This survey provides a comprehensive review of LLM-based Text2SQL studies. We first enumerate classic benchmarks and evaluation metrics. For the two mainstream methods, prompt engineering and finetuning, we introduce a comprehensive taxonomy and offer practical insights into each subcategory. We present an overall analysis of the above methods and various models evaluated on well-known datasets and extract some characteristics. Finally, we discuss the challenges and future directions in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信