{"title":"分子变化如何影响大脑状态和全脑活动:多尺度方法。","authors":"","doi":"10.1038/s43588-025-00813-w","DOIUrl":null,"url":null,"abstract":"Predicting how molecular changes affect brain activity is a challenge in neuroscience. We introduced a multiscale modeling approach to simulate these microscopic changes and how they impact macroscale brain activity. This approach predicted how the anesthetic action on synaptic receptors can lead to the transitions in macroscale brain activity observed empirically.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 6","pages":"442-443"},"PeriodicalIF":18.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How molecular changes impact brain states and whole-brain activity: a multiscale approach\",\"authors\":\"\",\"doi\":\"10.1038/s43588-025-00813-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting how molecular changes affect brain activity is a challenge in neuroscience. We introduced a multiscale modeling approach to simulate these microscopic changes and how they impact macroscale brain activity. This approach predicted how the anesthetic action on synaptic receptors can lead to the transitions in macroscale brain activity observed empirically.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 6\",\"pages\":\"442-443\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-025-00813-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00813-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
How molecular changes impact brain states and whole-brain activity: a multiscale approach
Predicting how molecular changes affect brain activity is a challenge in neuroscience. We introduced a multiscale modeling approach to simulate these microscopic changes and how they impact macroscale brain activity. This approach predicted how the anesthetic action on synaptic receptors can lead to the transitions in macroscale brain activity observed empirically.