干细胞生态位:基于ipsc的人类造血模型组装体。

Q4 Biochemistry, Genetics and Molecular Biology
Madeline J Caduc, Marcelo A S de Toledo, Steffen Koschmieder, Simón Méndez-Ferrer
{"title":"干细胞生态位:基于ipsc的人类造血模型组装体。","authors":"Madeline J Caduc, Marcelo A S de Toledo, Steffen Koschmieder, Simón Méndez-Ferrer","doi":"10.1007/7651_2025_629","DOIUrl":null,"url":null,"abstract":"<p><p>The bone marrow (BM) niche is a highly specialized and dynamic microenvironment that tightly regulates hematopoiesis in both health and disease. In this chapter, we present a protocol for generating patient-specific 3D BM-mimicking assembloids, which offer precise control over cellular composition and genetic background. This in vitro platform enables the dissection of mechanisms underlying hematopoietic regulation and BM niche remodeling. We describe, in detail, the stepwise differentiation of induced pluripotent stem cells (iPSCs) into hematopoietic and endothelial lineages, the isolation of human primary mesenchymal stromal cells (MSCs) from femoral heads, and the assembly of BM-mimicking 3D assembloids. Single-cell RNA sequencing of these assembloids identified key myeloid populations and non-hematopoietic lineages such as endothelial cells and various MSC clusters, all crucial for stem cell fate determination and niche maintenance. Furthermore, assembloids harboring the JAK2<sup>V617F</sup> driver mutation successfully recapitulated key features of myeloproliferative neoplasms, demonstrating the platform's potential for mechanistic studies in human hematopoiesis. This approach provides a powerful tool to model both physiological and neoplastic BM niches, facilitating preclinical research and drug development while potentially reducing reliance on animal models.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stem Cell Niche: iPSC-Based Assembloids for Modeling Human Hematopoiesis.\",\"authors\":\"Madeline J Caduc, Marcelo A S de Toledo, Steffen Koschmieder, Simón Méndez-Ferrer\",\"doi\":\"10.1007/7651_2025_629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The bone marrow (BM) niche is a highly specialized and dynamic microenvironment that tightly regulates hematopoiesis in both health and disease. In this chapter, we present a protocol for generating patient-specific 3D BM-mimicking assembloids, which offer precise control over cellular composition and genetic background. This in vitro platform enables the dissection of mechanisms underlying hematopoietic regulation and BM niche remodeling. We describe, in detail, the stepwise differentiation of induced pluripotent stem cells (iPSCs) into hematopoietic and endothelial lineages, the isolation of human primary mesenchymal stromal cells (MSCs) from femoral heads, and the assembly of BM-mimicking 3D assembloids. Single-cell RNA sequencing of these assembloids identified key myeloid populations and non-hematopoietic lineages such as endothelial cells and various MSC clusters, all crucial for stem cell fate determination and niche maintenance. Furthermore, assembloids harboring the JAK2<sup>V617F</sup> driver mutation successfully recapitulated key features of myeloproliferative neoplasms, demonstrating the platform's potential for mechanistic studies in human hematopoiesis. This approach provides a powerful tool to model both physiological and neoplastic BM niches, facilitating preclinical research and drug development while potentially reducing reliance on animal models.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2025_629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2025_629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

骨髓(BM)生态位是一个高度专业化和动态的微环境,在健康和疾病中密切调节造血。在本章中,我们提出了一种生成患者特异性3D bm模拟组装体的方案,该方案提供了对细胞组成和遗传背景的精确控制。这个体外平台可以解剖造血调节和骨髓生态位重塑的机制。我们详细描述了诱导多能干细胞(iPSCs)逐步分化为造血和内皮细胞系,从股骨头中分离人类原代间充质基质细胞(MSCs),以及模拟脑卒中的3D组装体的组装。这些组合体的单细胞RNA测序确定了关键的髓系群体和非造血谱系,如内皮细胞和各种间充质干细胞集群,这些都是干细胞命运决定和生态位维持的关键。此外,含有JAK2V617F驱动突变的组装体成功再现了骨髓增殖性肿瘤的关键特征,证明了该平台在人类造血机制研究中的潜力。这种方法提供了一个强大的工具来模拟生理和肿瘤BM利基,促进临床前研究和药物开发,同时潜在地减少对动物模型的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stem Cell Niche: iPSC-Based Assembloids for Modeling Human Hematopoiesis.

The bone marrow (BM) niche is a highly specialized and dynamic microenvironment that tightly regulates hematopoiesis in both health and disease. In this chapter, we present a protocol for generating patient-specific 3D BM-mimicking assembloids, which offer precise control over cellular composition and genetic background. This in vitro platform enables the dissection of mechanisms underlying hematopoietic regulation and BM niche remodeling. We describe, in detail, the stepwise differentiation of induced pluripotent stem cells (iPSCs) into hematopoietic and endothelial lineages, the isolation of human primary mesenchymal stromal cells (MSCs) from femoral heads, and the assembly of BM-mimicking 3D assembloids. Single-cell RNA sequencing of these assembloids identified key myeloid populations and non-hematopoietic lineages such as endothelial cells and various MSC clusters, all crucial for stem cell fate determination and niche maintenance. Furthermore, assembloids harboring the JAK2V617F driver mutation successfully recapitulated key features of myeloproliferative neoplasms, demonstrating the platform's potential for mechanistic studies in human hematopoiesis. This approach provides a powerful tool to model both physiological and neoplastic BM niches, facilitating preclinical research and drug development while potentially reducing reliance on animal models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信