Rachit Kumar, Justin Skowno, Britta S von Ungern-Sternberg, Andrew Davidson, Ting Xu, Jianmin Zhang, XingRong Song, Mazhong Zhang, Ping Zhao, Huacheng Liu, Yifei Jiang, Yunxia Zuo, Jurgen C de Graaff, Laszlo Vutskits, Vanessa A Olbrecht, Peter Szmuk, Allan F Simpao, Fuchiang Rich Tsui, Jayant Nick Pratap, Asif Padiyath, Olivia Nelson, Charles D Kurth, Ian Yuan
{"title":"定量脑电图和机器学习预测婴儿过期七氟醚浓度。","authors":"Rachit Kumar, Justin Skowno, Britta S von Ungern-Sternberg, Andrew Davidson, Ting Xu, Jianmin Zhang, XingRong Song, Mazhong Zhang, Ping Zhao, Huacheng Liu, Yifei Jiang, Yunxia Zuo, Jurgen C de Graaff, Laszlo Vutskits, Vanessa A Olbrecht, Peter Szmuk, Allan F Simpao, Fuchiang Rich Tsui, Jayant Nick Pratap, Asif Padiyath, Olivia Nelson, Charles D Kurth, Ian Yuan","doi":"10.1007/s10877-025-01301-2","DOIUrl":null,"url":null,"abstract":"<p><p>Processed electroencephalography (EEG) indices used to guide anesthetic dosing in adults are not validated in young infants. Raw EEG can be processed mathematically, yielding quantitative EEG parameters (qEEG). We hypothesized that machine learning combined with qEEG can accurately classify expired sevoflurane concentrations in young infants. Knowledge from this may contribute to development of future infant-specific EEG algorithms. Frontal EEG collected from infants ≤ 3 months were time-matched as one-minute epochs to expired sevoflurane (eSevo). Fifteen qEEG parameters were extracted from each epoch and eight machine learning models combined the qEEG to classify each epoch into one of four eSevo levels (%): 0.1-1.0, 1.0-2.1, 2.1-2.9, and > 2.9. 64 epochs formed the post hoc SHAP dataset to determine the qEEG that contributed most to the model. The remaining epochs were randomly split 50 times into 80/20 training/testing sets. Accuracy and F1-score determined model performance. 42 infants provided 4574 epochs. The top classifiers K-nearest neighbors, default multi-layer perceptron, and support vector machine achieved 67.5-68.7% accuracy. Burst suppression ratio and entropy β were the top contributors to the models. Post hoc analysis performed without burst suppression ratio yielded similar prediction performance. In young infants, machine learning applied to qEEG predicted eSevo levels with moderate success. Burst suppression ratio, the most important contributor, represented an efficient EEG feature that encapsulated underlying EEG changes seen on other qEEG features. These results provided insight into EEG parameter selection and optimal machine learning models used for future development of infant-specific EEG algorithms.</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":"999-1014"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474631/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative electroencephalogram and machine learning to predict expired sevoflurane concentration in infants.\",\"authors\":\"Rachit Kumar, Justin Skowno, Britta S von Ungern-Sternberg, Andrew Davidson, Ting Xu, Jianmin Zhang, XingRong Song, Mazhong Zhang, Ping Zhao, Huacheng Liu, Yifei Jiang, Yunxia Zuo, Jurgen C de Graaff, Laszlo Vutskits, Vanessa A Olbrecht, Peter Szmuk, Allan F Simpao, Fuchiang Rich Tsui, Jayant Nick Pratap, Asif Padiyath, Olivia Nelson, Charles D Kurth, Ian Yuan\",\"doi\":\"10.1007/s10877-025-01301-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Processed electroencephalography (EEG) indices used to guide anesthetic dosing in adults are not validated in young infants. Raw EEG can be processed mathematically, yielding quantitative EEG parameters (qEEG). We hypothesized that machine learning combined with qEEG can accurately classify expired sevoflurane concentrations in young infants. Knowledge from this may contribute to development of future infant-specific EEG algorithms. Frontal EEG collected from infants ≤ 3 months were time-matched as one-minute epochs to expired sevoflurane (eSevo). Fifteen qEEG parameters were extracted from each epoch and eight machine learning models combined the qEEG to classify each epoch into one of four eSevo levels (%): 0.1-1.0, 1.0-2.1, 2.1-2.9, and > 2.9. 64 epochs formed the post hoc SHAP dataset to determine the qEEG that contributed most to the model. The remaining epochs were randomly split 50 times into 80/20 training/testing sets. Accuracy and F1-score determined model performance. 42 infants provided 4574 epochs. The top classifiers K-nearest neighbors, default multi-layer perceptron, and support vector machine achieved 67.5-68.7% accuracy. Burst suppression ratio and entropy β were the top contributors to the models. Post hoc analysis performed without burst suppression ratio yielded similar prediction performance. In young infants, machine learning applied to qEEG predicted eSevo levels with moderate success. Burst suppression ratio, the most important contributor, represented an efficient EEG feature that encapsulated underlying EEG changes seen on other qEEG features. These results provided insight into EEG parameter selection and optimal machine learning models used for future development of infant-specific EEG algorithms.</p>\",\"PeriodicalId\":15513,\"journal\":{\"name\":\"Journal of Clinical Monitoring and Computing\",\"volume\":\" \",\"pages\":\"999-1014\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Monitoring and Computing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10877-025-01301-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-025-01301-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
Quantitative electroencephalogram and machine learning to predict expired sevoflurane concentration in infants.
Processed electroencephalography (EEG) indices used to guide anesthetic dosing in adults are not validated in young infants. Raw EEG can be processed mathematically, yielding quantitative EEG parameters (qEEG). We hypothesized that machine learning combined with qEEG can accurately classify expired sevoflurane concentrations in young infants. Knowledge from this may contribute to development of future infant-specific EEG algorithms. Frontal EEG collected from infants ≤ 3 months were time-matched as one-minute epochs to expired sevoflurane (eSevo). Fifteen qEEG parameters were extracted from each epoch and eight machine learning models combined the qEEG to classify each epoch into one of four eSevo levels (%): 0.1-1.0, 1.0-2.1, 2.1-2.9, and > 2.9. 64 epochs formed the post hoc SHAP dataset to determine the qEEG that contributed most to the model. The remaining epochs were randomly split 50 times into 80/20 training/testing sets. Accuracy and F1-score determined model performance. 42 infants provided 4574 epochs. The top classifiers K-nearest neighbors, default multi-layer perceptron, and support vector machine achieved 67.5-68.7% accuracy. Burst suppression ratio and entropy β were the top contributors to the models. Post hoc analysis performed without burst suppression ratio yielded similar prediction performance. In young infants, machine learning applied to qEEG predicted eSevo levels with moderate success. Burst suppression ratio, the most important contributor, represented an efficient EEG feature that encapsulated underlying EEG changes seen on other qEEG features. These results provided insight into EEG parameter selection and optimal machine learning models used for future development of infant-specific EEG algorithms.
期刊介绍:
The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine.
The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group.
The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.