加强火灾排放清单对急性健康影响的研究:整合高时空分辨率数据。

IF 2.9 3区 农林科学 Q1 FORESTRY
International Journal of Wildland Fire Pub Date : 2025-02-01 Epub Date: 2025-02-20 DOI:10.1071/wf24040
Sam D Faulstich, Matthew J Strickland, Heather A Holmes
{"title":"加强火灾排放清单对急性健康影响的研究:整合高时空分辨率数据。","authors":"Sam D Faulstich, Matthew J Strickland, Heather A Holmes","doi":"10.1071/wf24040","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.</p><p><strong>Aims: </strong>This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.</p><p><strong>Methods: </strong>High temporal and spatial resolution burned area information from two FEI products are combined into a single dataset, and a linear regression model fills gaps in daily fire progression.</p><p><strong>Key results: </strong>The combined dataset provides up to 71% more PM<sub>2.5</sub> emissions, 69% more burned area, and 367% more fire days per year than using a single source of burned area information.</p><p><strong>Conclusions: </strong>The FEI combination method results in improved FEI information with no gaps in daily fire emissions estimates.</p><p><strong>Implications: </strong>The combined dataset provides a functional improvement to FEI data that can be achieved with currently available data.</p>","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":"34 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129123/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Fire Emissions Inventories for Acute Health Effects Studies: Integrating High Spatial and Temporal Resolution Data.\",\"authors\":\"Sam D Faulstich, Matthew J Strickland, Heather A Holmes\",\"doi\":\"10.1071/wf24040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.</p><p><strong>Aims: </strong>This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.</p><p><strong>Methods: </strong>High temporal and spatial resolution burned area information from two FEI products are combined into a single dataset, and a linear regression model fills gaps in daily fire progression.</p><p><strong>Key results: </strong>The combined dataset provides up to 71% more PM<sub>2.5</sub> emissions, 69% more burned area, and 367% more fire days per year than using a single source of burned area information.</p><p><strong>Conclusions: </strong>The FEI combination method results in improved FEI information with no gaps in daily fire emissions estimates.</p><p><strong>Implications: </strong>The combined dataset provides a functional improvement to FEI data that can be achieved with currently available data.</p>\",\"PeriodicalId\":14464,\"journal\":{\"name\":\"International Journal of Wildland Fire\",\"volume\":\"34 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129123/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Wildland Fire\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1071/wf24040\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wildland Fire","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/wf24040","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

背景:每日火灾进展信息对于检查人群水平烟雾暴露与随后健康事件之间关系的公共卫生研究至关重要。在火灾排放清单中使用的遥感问题可能会导致错过暴露,从而影响急性健康影响研究的结果。目的:本文提供了一种利用现成信息改进FEI数据集的方法,以创建一个具有每日火灾进展的更健壮的数据集。方法:将两个FEI产品的高时空分辨率烧伤面积信息合并为一个数据集,并用线性回归模型填补火灾日变化的空白。关键结果:与使用单一燃烧面积信息来源相比,合并后的数据集提供的PM2.5排放量增加了71%,燃烧面积增加了69%,每年的火灾天数增加了367%。结论:FEI组合方法改进了FEI信息,在日常火灾排放估计中没有差距。含义:合并后的数据集对FEI数据提供了功能上的改进,这可以用当前可用的数据来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Fire Emissions Inventories for Acute Health Effects Studies: Integrating High Spatial and Temporal Resolution Data.

Background: Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.

Aims: This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.

Methods: High temporal and spatial resolution burned area information from two FEI products are combined into a single dataset, and a linear regression model fills gaps in daily fire progression.

Key results: The combined dataset provides up to 71% more PM2.5 emissions, 69% more burned area, and 367% more fire days per year than using a single source of burned area information.

Conclusions: The FEI combination method results in improved FEI information with no gaps in daily fire emissions estimates.

Implications: The combined dataset provides a functional improvement to FEI data that can be achieved with currently available data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.70%
发文量
67
审稿时长
12-24 weeks
期刊介绍: International Journal of Wildland Fire publishes new and significant articles that advance basic and applied research concerning wildland fire. Published papers aim to assist in the understanding of the basic principles of fire as a process, its ecological impact at the stand level and the landscape level, modelling fire and its effects, as well as presenting information on how to effectively and efficiently manage fire. The journal has an international perspective, since wildland fire plays a major social, economic and ecological role around the globe. The International Journal of Wildland Fire is published on behalf of the International Association of Wildland Fire.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信