{"title":"在斑马鱼模型中评估bsa还原贻贝源硒纳米颗粒减轻硫酸铜诱导的肝损伤和神经变性的治疗潜力。","authors":"Suganiya Umapathy, Ieshita Pan","doi":"10.3389/fgene.2025.1522370","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Liver fibrosis is the abnormal accumulation of extracellular matrix and eventual formation of fibrous scar in response to chronic liver injury, which can be triggered by increased levels of reactive oxygen species. The brain-liver axis is a crucial communication pathway that significantly influences the intricate interactions between hepatic function and brain health. Selenium, as a source of selenoproteins, plays a vital role in antioxidant defense systems. The extraction of selenium from mussels leverages their natural bioaccumulation, providing a biocompatible source. Selenium nanoparticles are known for their potential antioxidant activity and can be employed to regulate ROS levels to overcome hepatic damage.</p><p><strong>Methods: </strong>Selenium nanoparticles were synthesized from mussel-extracted selenium and stabilized with bovine serum albumin. The zebrafish models exposed to copper sulfate were treated with selenium nanoparticles (5-25 μg/ml). This study evaluated their potential role as antioxidants against hepatic damage induced by copper sulfate <i>in vivo</i> in the zebrafish model.</p><p><strong>Results: </strong>The bovine serum albumin stabilized selenium nanoparticles reduced for 30 minutes and 1 hour were spherical with a size of 19 and 16 nm. Stabilized selenium nanoparticles reduced for 30 minutes (25 μg/ml) showed significant <i>in vitro</i> reactive oxygen species scavenging activity and improved <i>in vivo</i> antioxidant enzyme levels by decreasing lipid peroxidation and nitric oxide levels. Histopathological examination revealed a delay in the progression of copper sulfate-induced hepatic damage, and upregulated the expression of antioxidants, while the hepatic and mitochondrial damage markers were downregulated.</p><p><strong>Conclusion: </strong>In conclusion, bovine serum albumin-reduced selenium nanoparticles can be a promising therapeutic antioxidant for protecting against reactive oxygen species-induced hepatic damage and neurodegeneration.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1522370"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127314/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating the therapeutic potential of BSA-reduced mussel-derived selenium nanoparticles to mitigate copper sulfate-induced hepatic damage and neurodegeneration in a zebrafish model.\",\"authors\":\"Suganiya Umapathy, Ieshita Pan\",\"doi\":\"10.3389/fgene.2025.1522370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Liver fibrosis is the abnormal accumulation of extracellular matrix and eventual formation of fibrous scar in response to chronic liver injury, which can be triggered by increased levels of reactive oxygen species. The brain-liver axis is a crucial communication pathway that significantly influences the intricate interactions between hepatic function and brain health. Selenium, as a source of selenoproteins, plays a vital role in antioxidant defense systems. The extraction of selenium from mussels leverages their natural bioaccumulation, providing a biocompatible source. Selenium nanoparticles are known for their potential antioxidant activity and can be employed to regulate ROS levels to overcome hepatic damage.</p><p><strong>Methods: </strong>Selenium nanoparticles were synthesized from mussel-extracted selenium and stabilized with bovine serum albumin. The zebrafish models exposed to copper sulfate were treated with selenium nanoparticles (5-25 μg/ml). This study evaluated their potential role as antioxidants against hepatic damage induced by copper sulfate <i>in vivo</i> in the zebrafish model.</p><p><strong>Results: </strong>The bovine serum albumin stabilized selenium nanoparticles reduced for 30 minutes and 1 hour were spherical with a size of 19 and 16 nm. Stabilized selenium nanoparticles reduced for 30 minutes (25 μg/ml) showed significant <i>in vitro</i> reactive oxygen species scavenging activity and improved <i>in vivo</i> antioxidant enzyme levels by decreasing lipid peroxidation and nitric oxide levels. Histopathological examination revealed a delay in the progression of copper sulfate-induced hepatic damage, and upregulated the expression of antioxidants, while the hepatic and mitochondrial damage markers were downregulated.</p><p><strong>Conclusion: </strong>In conclusion, bovine serum albumin-reduced selenium nanoparticles can be a promising therapeutic antioxidant for protecting against reactive oxygen species-induced hepatic damage and neurodegeneration.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":\"16 \",\"pages\":\"1522370\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127314/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2025.1522370\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1522370","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Evaluating the therapeutic potential of BSA-reduced mussel-derived selenium nanoparticles to mitigate copper sulfate-induced hepatic damage and neurodegeneration in a zebrafish model.
Introduction: Liver fibrosis is the abnormal accumulation of extracellular matrix and eventual formation of fibrous scar in response to chronic liver injury, which can be triggered by increased levels of reactive oxygen species. The brain-liver axis is a crucial communication pathway that significantly influences the intricate interactions between hepatic function and brain health. Selenium, as a source of selenoproteins, plays a vital role in antioxidant defense systems. The extraction of selenium from mussels leverages their natural bioaccumulation, providing a biocompatible source. Selenium nanoparticles are known for their potential antioxidant activity and can be employed to regulate ROS levels to overcome hepatic damage.
Methods: Selenium nanoparticles were synthesized from mussel-extracted selenium and stabilized with bovine serum albumin. The zebrafish models exposed to copper sulfate were treated with selenium nanoparticles (5-25 μg/ml). This study evaluated their potential role as antioxidants against hepatic damage induced by copper sulfate in vivo in the zebrafish model.
Results: The bovine serum albumin stabilized selenium nanoparticles reduced for 30 minutes and 1 hour were spherical with a size of 19 and 16 nm. Stabilized selenium nanoparticles reduced for 30 minutes (25 μg/ml) showed significant in vitro reactive oxygen species scavenging activity and improved in vivo antioxidant enzyme levels by decreasing lipid peroxidation and nitric oxide levels. Histopathological examination revealed a delay in the progression of copper sulfate-induced hepatic damage, and upregulated the expression of antioxidants, while the hepatic and mitochondrial damage markers were downregulated.
Conclusion: In conclusion, bovine serum albumin-reduced selenium nanoparticles can be a promising therapeutic antioxidant for protecting against reactive oxygen species-induced hepatic damage and neurodegeneration.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.