Bok-Soon Lee , Yea-In Park , Hengtian Liu , Sang Gyu Kim , Hyo Jeong Kim , Ji-Hye Choi , Si Hyun Rho , Joselyn Padilla , Jin Roh , Hyun Goo Woo , Hae Jin Seo , Man Ho Choi , Yu-Jin Jeong , Evan C. Lien , Syed Hassan Mehdi , Dongjoon Lee , Donghoon Yoon , Chul-Ho Kim , Jiyoung Lee
{"title":"7-脱氢胆固醇在头颈部鳞状细胞癌内质网应激及凋亡中的作用。","authors":"Bok-Soon Lee , Yea-In Park , Hengtian Liu , Sang Gyu Kim , Hyo Jeong Kim , Ji-Hye Choi , Si Hyun Rho , Joselyn Padilla , Jin Roh , Hyun Goo Woo , Hae Jin Seo , Man Ho Choi , Yu-Jin Jeong , Evan C. Lien , Syed Hassan Mehdi , Dongjoon Lee , Donghoon Yoon , Chul-Ho Kim , Jiyoung Lee","doi":"10.1016/j.canlet.2025.217842","DOIUrl":null,"url":null,"abstract":"<div><div>Alterations of metabolic pathways that sustain cancer cell survival often offer promising therapeutic avenues. Here, we show that enhanced <em>de novo</em> cholesterol biosynthesis is crucial for the survival of head and neck squamous cell carcinoma (HNSCC). Transcriptomic analysis of HNSCC tissues identified profound dysregulation in steroid and cholesterol metabolism compared to normal tissues. Inhibition of two key enzymes, DHCR7 and DHCR24, which mediate cholesterol biosynthesis, induced apoptosis in HNSCC cells, even when cholesterol levels were restored. Metabolomic profiling revealed the accumulation of 7-dehydrocholesterol (7-DHC) upon DHCR7 or DHCR24 inhibition, triggering endoplasmic reticulum (ER) stress and promoting further cell death. These findings suggest that HNSCC cells adapt to ER stress by modulating 7-DHC levels through enhancing DHCR7 and DHCR24 levels, highlighting a metabolic vulnerability in HNSCC and demonstrating a direct link between cholesterol metabolism and ER stress in cancer cell viability.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"628 ","pages":"Article 217842"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of 7-dehydrocholesterol in inducing ER stress and apoptosis of head and neck squamous cell carcinoma\",\"authors\":\"Bok-Soon Lee , Yea-In Park , Hengtian Liu , Sang Gyu Kim , Hyo Jeong Kim , Ji-Hye Choi , Si Hyun Rho , Joselyn Padilla , Jin Roh , Hyun Goo Woo , Hae Jin Seo , Man Ho Choi , Yu-Jin Jeong , Evan C. Lien , Syed Hassan Mehdi , Dongjoon Lee , Donghoon Yoon , Chul-Ho Kim , Jiyoung Lee\",\"doi\":\"10.1016/j.canlet.2025.217842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alterations of metabolic pathways that sustain cancer cell survival often offer promising therapeutic avenues. Here, we show that enhanced <em>de novo</em> cholesterol biosynthesis is crucial for the survival of head and neck squamous cell carcinoma (HNSCC). Transcriptomic analysis of HNSCC tissues identified profound dysregulation in steroid and cholesterol metabolism compared to normal tissues. Inhibition of two key enzymes, DHCR7 and DHCR24, which mediate cholesterol biosynthesis, induced apoptosis in HNSCC cells, even when cholesterol levels were restored. Metabolomic profiling revealed the accumulation of 7-dehydrocholesterol (7-DHC) upon DHCR7 or DHCR24 inhibition, triggering endoplasmic reticulum (ER) stress and promoting further cell death. These findings suggest that HNSCC cells adapt to ER stress by modulating 7-DHC levels through enhancing DHCR7 and DHCR24 levels, highlighting a metabolic vulnerability in HNSCC and demonstrating a direct link between cholesterol metabolism and ER stress in cancer cell viability.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"628 \",\"pages\":\"Article 217842\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383525004094\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525004094","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The role of 7-dehydrocholesterol in inducing ER stress and apoptosis of head and neck squamous cell carcinoma
Alterations of metabolic pathways that sustain cancer cell survival often offer promising therapeutic avenues. Here, we show that enhanced de novo cholesterol biosynthesis is crucial for the survival of head and neck squamous cell carcinoma (HNSCC). Transcriptomic analysis of HNSCC tissues identified profound dysregulation in steroid and cholesterol metabolism compared to normal tissues. Inhibition of two key enzymes, DHCR7 and DHCR24, which mediate cholesterol biosynthesis, induced apoptosis in HNSCC cells, even when cholesterol levels were restored. Metabolomic profiling revealed the accumulation of 7-dehydrocholesterol (7-DHC) upon DHCR7 or DHCR24 inhibition, triggering endoplasmic reticulum (ER) stress and promoting further cell death. These findings suggest that HNSCC cells adapt to ER stress by modulating 7-DHC levels through enhancing DHCR7 and DHCR24 levels, highlighting a metabolic vulnerability in HNSCC and demonstrating a direct link between cholesterol metabolism and ER stress in cancer cell viability.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.