{"title":"从射电和硬x射线光谱看太阳耀斑中的粒子加速","authors":"Adriana Valio, Douglas F. da Silva, Hui Li","doi":"10.1002/asna.20240134","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For a deeper understanding of the physical processes at play in solar flares, it is necessary to analyze the flare emissions at multiple wavelengths. This multifrequency approach enables the characterization of energetic electrons accelerated from hundreds of keV and up to several tens of MeV. This study reports on the observation of 10 solar flares, in which the spectral parameters were determined for the cm/mm and x-ray bands. The radio spectrum was fitted using gyrosynchrotron emission whereas the hard x-rays fit considered a model of thermal plus nonthermal emission of accelerated electrons. The results show that the spectral indices of the energy distribution of nonthermal electrons emitting in millimeter and hard x-rays do not agree, with the millimeter spectral index being approximately 2 units harder than that of hard x-rays. These findings are consistent with previous research and suggest the existence of a break in the energy spectrum of accelerated electrons. Moreover, for the only flare where photons exceeding 1 MeV were detected, the hard x-ray spectra exhibited a broken power-law where the index of the electron distribution above ~500 keV agreed with the inferred radio spectral index.</p>\n </div>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"346 3-4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle Acceleration in Solar Flares From Radio and Hard X-Ray Spectra\",\"authors\":\"Adriana Valio, Douglas F. da Silva, Hui Li\",\"doi\":\"10.1002/asna.20240134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For a deeper understanding of the physical processes at play in solar flares, it is necessary to analyze the flare emissions at multiple wavelengths. This multifrequency approach enables the characterization of energetic electrons accelerated from hundreds of keV and up to several tens of MeV. This study reports on the observation of 10 solar flares, in which the spectral parameters were determined for the cm/mm and x-ray bands. The radio spectrum was fitted using gyrosynchrotron emission whereas the hard x-rays fit considered a model of thermal plus nonthermal emission of accelerated electrons. The results show that the spectral indices of the energy distribution of nonthermal electrons emitting in millimeter and hard x-rays do not agree, with the millimeter spectral index being approximately 2 units harder than that of hard x-rays. These findings are consistent with previous research and suggest the existence of a break in the energy spectrum of accelerated electrons. Moreover, for the only flare where photons exceeding 1 MeV were detected, the hard x-ray spectra exhibited a broken power-law where the index of the electron distribution above ~500 keV agreed with the inferred radio spectral index.</p>\\n </div>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"346 3-4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240134\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240134","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Particle Acceleration in Solar Flares From Radio and Hard X-Ray Spectra
For a deeper understanding of the physical processes at play in solar flares, it is necessary to analyze the flare emissions at multiple wavelengths. This multifrequency approach enables the characterization of energetic electrons accelerated from hundreds of keV and up to several tens of MeV. This study reports on the observation of 10 solar flares, in which the spectral parameters were determined for the cm/mm and x-ray bands. The radio spectrum was fitted using gyrosynchrotron emission whereas the hard x-rays fit considered a model of thermal plus nonthermal emission of accelerated electrons. The results show that the spectral indices of the energy distribution of nonthermal electrons emitting in millimeter and hard x-rays do not agree, with the millimeter spectral index being approximately 2 units harder than that of hard x-rays. These findings are consistent with previous research and suggest the existence of a break in the energy spectrum of accelerated electrons. Moreover, for the only flare where photons exceeding 1 MeV were detected, the hard x-ray spectra exhibited a broken power-law where the index of the electron distribution above ~500 keV agreed with the inferred radio spectral index.
期刊介绍:
Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.