恒星物理学和广义相对论

IF 1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Shuichi Yokoyama
{"title":"恒星物理学和广义相对论","authors":"Shuichi Yokoyama","doi":"10.1002/asna.20240127","DOIUrl":null,"url":null,"abstract":"<p>The general theory of relativity is currently established as the most precise theory of gravity supported by observations, and its application is diverse ranging from astronomy to cosmology, while its application to astrophysics has been restricted only to compact stars due to the assumption that the Newtonian approximation is sufficient for celestial bodies with medium density such as the sun. Surprisingly, the recent research of the author has implied that this long-held assumption is not valid, and that nonperturbative effects significantly change relevant results obtained by Newtonian gravity. In particular, local physical quantities inside the sun are newly predicted to exhibit power law differently from the so-called standard solar model. This surprising result is reviewed including brief discussion of physics behind the discrepancy and a little new application.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"346 3-4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asna.20240127","citationCount":"0","resultStr":"{\"title\":\"Stellar Physics and General Relativity\",\"authors\":\"Shuichi Yokoyama\",\"doi\":\"10.1002/asna.20240127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The general theory of relativity is currently established as the most precise theory of gravity supported by observations, and its application is diverse ranging from astronomy to cosmology, while its application to astrophysics has been restricted only to compact stars due to the assumption that the Newtonian approximation is sufficient for celestial bodies with medium density such as the sun. Surprisingly, the recent research of the author has implied that this long-held assumption is not valid, and that nonperturbative effects significantly change relevant results obtained by Newtonian gravity. In particular, local physical quantities inside the sun are newly predicted to exhibit power law differently from the so-called standard solar model. This surprising result is reviewed including brief discussion of physics behind the discrepancy and a little new application.</p>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"346 3-4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asna.20240127\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240127\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240127","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

广义相对论是目前观测支持的最精确的引力理论,它的应用范围从天文学到宇宙学,而它在天体物理学中的应用仅限于致密恒星,因为假设牛顿近似足以适用于中等密度的天体,如太阳。令人惊讶的是,作者最近的研究表明,这个长期以来的假设是不成立的,非摄动效应显著地改变了牛顿引力得到的相关结果。特别是,太阳内部的局部物理量最近被预测为与所谓的标准太阳模型不同的幂律。回顾了这一惊人的结果,包括对差异背后的物理学的简要讨论和一些新的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stellar Physics and General Relativity

The general theory of relativity is currently established as the most precise theory of gravity supported by observations, and its application is diverse ranging from astronomy to cosmology, while its application to astrophysics has been restricted only to compact stars due to the assumption that the Newtonian approximation is sufficient for celestial bodies with medium density such as the sun. Surprisingly, the recent research of the author has implied that this long-held assumption is not valid, and that nonperturbative effects significantly change relevant results obtained by Newtonian gravity. In particular, local physical quantities inside the sun are newly predicted to exhibit power law differently from the so-called standard solar model. This surprising result is reviewed including brief discussion of physics behind the discrepancy and a little new application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信