{"title":"基于多源特征融合的可解释大豆期货价格预测","authors":"Binrong Wu, Sihao Yu, Sheng-Xiang Lv","doi":"10.1002/for.3246","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The prediction and early warning of soybean futures prices have been even more crucial for the formulation of food-related policies and trade risk management. Amid increasing geopolitical conflicts and uncertainty in trade policies across countries in recent years, there have been significant fluctuations in global soybean futures prices, making it necessary to investigate fluctuations in soybean futures prices, reveal the price determination mechanism, and accurately predict trends in future prices. Therefore, this study proposes a comprehensive and interpretable framework for soybean futures price forecasting. Specifically, this study employs a set of methodologies. Using a snow ablation optimizer (SAO), this study improves the parameters of a time fusion transformer (TFT) model, an advanced interpretable predictive model based on a self-attention mechanism. Besides, it addresses the factors influencing soybean futures prices and constructs effective fusion features through a feature fusion method. To explore volatility trends, the original soybean futures price series are decomposed using variational mode decomposition (VMD). This study also enhances the accuracy of soybean futures price predictions by introducing global geopolitical risk coefficients and trading volumes as predictors. The empirical findings suggest that the VMD-SAO-TFT model enhances prediction accuracy and interpretability, offering implications for decision-makers to achieve accurate predictions and early warning of agricultural futures prices.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 4","pages":"1363-1382"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable Soybean Futures Price Forecasting Based on Multi-Source Feature Fusion\",\"authors\":\"Binrong Wu, Sihao Yu, Sheng-Xiang Lv\",\"doi\":\"10.1002/for.3246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The prediction and early warning of soybean futures prices have been even more crucial for the formulation of food-related policies and trade risk management. Amid increasing geopolitical conflicts and uncertainty in trade policies across countries in recent years, there have been significant fluctuations in global soybean futures prices, making it necessary to investigate fluctuations in soybean futures prices, reveal the price determination mechanism, and accurately predict trends in future prices. Therefore, this study proposes a comprehensive and interpretable framework for soybean futures price forecasting. Specifically, this study employs a set of methodologies. Using a snow ablation optimizer (SAO), this study improves the parameters of a time fusion transformer (TFT) model, an advanced interpretable predictive model based on a self-attention mechanism. Besides, it addresses the factors influencing soybean futures prices and constructs effective fusion features through a feature fusion method. To explore volatility trends, the original soybean futures price series are decomposed using variational mode decomposition (VMD). This study also enhances the accuracy of soybean futures price predictions by introducing global geopolitical risk coefficients and trading volumes as predictors. The empirical findings suggest that the VMD-SAO-TFT model enhances prediction accuracy and interpretability, offering implications for decision-makers to achieve accurate predictions and early warning of agricultural futures prices.</p>\\n </div>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":\"44 4\",\"pages\":\"1363-1382\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3246\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3246","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Explainable Soybean Futures Price Forecasting Based on Multi-Source Feature Fusion
The prediction and early warning of soybean futures prices have been even more crucial for the formulation of food-related policies and trade risk management. Amid increasing geopolitical conflicts and uncertainty in trade policies across countries in recent years, there have been significant fluctuations in global soybean futures prices, making it necessary to investigate fluctuations in soybean futures prices, reveal the price determination mechanism, and accurately predict trends in future prices. Therefore, this study proposes a comprehensive and interpretable framework for soybean futures price forecasting. Specifically, this study employs a set of methodologies. Using a snow ablation optimizer (SAO), this study improves the parameters of a time fusion transformer (TFT) model, an advanced interpretable predictive model based on a self-attention mechanism. Besides, it addresses the factors influencing soybean futures prices and constructs effective fusion features through a feature fusion method. To explore volatility trends, the original soybean futures price series are decomposed using variational mode decomposition (VMD). This study also enhances the accuracy of soybean futures price predictions by introducing global geopolitical risk coefficients and trading volumes as predictors. The empirical findings suggest that the VMD-SAO-TFT model enhances prediction accuracy and interpretability, offering implications for decision-makers to achieve accurate predictions and early warning of agricultural futures prices.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.