弯曲空间中的随机量子力学:在史瓦西黑洞中的应用

IF 1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Juan S. Jerez-Rodriguez, Tonatiuh Matos
{"title":"弯曲空间中的随机量子力学:在史瓦西黑洞中的应用","authors":"Juan S. Jerez-Rodriguez,&nbsp;Tonatiuh Matos","doi":"10.1002/asna.70007","DOIUrl":null,"url":null,"abstract":"<p>In this work, we start from the hypothesis that the universe lives in a Gravitational Wave Background (GWB). From this hypothesis, it follows that space–time is not locally flat because we have to take into account the fluctuations of the GWB in space–time. This implies that sufficiently small particles will feel these oscillations, preventing them from following geodesic trajectories. Thus, in a previous work, it was shown that if these particles follow the geodesic trajectories plus a stochastic term due to space–time fluctuations, the field equation for these quantum particles is simply the Klein–Gordon equation in this arbitrary curved space–time. In this work, we analyze these geodesics plus the stochastic trajectories in a Schwarzschild black hole.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"346 3-4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asna.70007","citationCount":"0","resultStr":"{\"title\":\"Stochastic Quantum Mechanics in Curved Spaces: Application to Schwarzschild Black Holes\",\"authors\":\"Juan S. Jerez-Rodriguez,&nbsp;Tonatiuh Matos\",\"doi\":\"10.1002/asna.70007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we start from the hypothesis that the universe lives in a Gravitational Wave Background (GWB). From this hypothesis, it follows that space–time is not locally flat because we have to take into account the fluctuations of the GWB in space–time. This implies that sufficiently small particles will feel these oscillations, preventing them from following geodesic trajectories. Thus, in a previous work, it was shown that if these particles follow the geodesic trajectories plus a stochastic term due to space–time fluctuations, the field equation for these quantum particles is simply the Klein–Gordon equation in this arbitrary curved space–time. In this work, we analyze these geodesics plus the stochastic trajectories in a Schwarzschild black hole.</p>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"346 3-4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asna.70007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.70007\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.70007","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们从宇宙存在于引力波背景(GWB)的假设开始。从这个假设可以得出,时空不是局部平坦的,因为我们必须考虑到GWB在时空中的波动。这意味着足够小的粒子会感受到这些振荡,从而阻止它们沿着测地线轨迹运动。因此,在之前的工作中,我们已经证明,如果这些粒子沿着测地线轨迹加上一个由于时空波动而产生的随机项,那么这些量子粒子的场方程就是这个任意弯曲时空中的克莱因-戈登方程。在这项工作中,我们分析了这些测地线加上史瓦西黑洞的随机轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stochastic Quantum Mechanics in Curved Spaces: Application to Schwarzschild Black Holes

Stochastic Quantum Mechanics in Curved Spaces: Application to Schwarzschild Black Holes

In this work, we start from the hypothesis that the universe lives in a Gravitational Wave Background (GWB). From this hypothesis, it follows that space–time is not locally flat because we have to take into account the fluctuations of the GWB in space–time. This implies that sufficiently small particles will feel these oscillations, preventing them from following geodesic trajectories. Thus, in a previous work, it was shown that if these particles follow the geodesic trajectories plus a stochastic term due to space–time fluctuations, the field equation for these quantum particles is simply the Klein–Gordon equation in this arbitrary curved space–time. In this work, we analyze these geodesics plus the stochastic trajectories in a Schwarzschild black hole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信